| A. | 4.6 | B. | 4.8 | C. | 5 | D. | 5.2 |
分析 根据菱形的对角线互相垂直平分求出OA、OB,再根据勾股定理列式求出AB,然后利用菱形的面积列式计算即可得解.
解答 解:在菱形ABCD中,AC⊥BD,
∵AC=8,BD=6,
∴OA=$\frac{1}{2}$AC=$\frac{1}{2}$×8=4,OB=$\frac{1}{2}$BD=$\frac{1}{2}$×6=3,
在Rt△AOB中,AB=$\sqrt{A{O}^{2}+B{O}^{2}}$=5,
∵DH⊥AB,
∴菱形ABCD的面积=$\frac{1}{2}$AC•BD=AB•DH,
即×6×8=5•DH,
解得DH=4.8,
故选B.
点评 本题考查了菱形的对角线互相垂直平分的性质,勾股定理,根据菱形的面积的两种表示方法列出方程是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com