精英家教网 > 初中数学 > 题目详情
如图,直线y1=
1
2
x+
5
2
与x轴、y轴分别交于点C、D,直线y2=3x-5与x轴、y轴分别交于点B、A,两直线交于点E.
(1)求点E的坐标;
(2)求∠CEA的度数;
(3)P(0,
9
2
)为y轴上一点,点M从点P出发以每秒1个单位的速度向点D运动,同时点Q从点D出发以每秒
5
个单位的速度向点C运动,运动时间为t,问t为何值S△EMQ的面积最大?
考点:一次函数综合题
专题:
分析:(1)求交点坐标是一次函数中非常基础题目,方法就是设交点坐标为(x,y),利用在图象上的点一定满足图象的方程,因为交点同时在两条直线上,那么它的坐标就同时满足两个直线方程,进而组成一元二次方程组,求得x,y,即得坐标.
(2)求角度一般考虑的特殊角或者特殊直角三角形等内容,可是题目中∠CEA无法分割成特殊角的组合也不在特殊直角三角形中.既然(1)中求E点坐标,(3,4)表示OE的长度恰为5,而CO,AO也都为5,这里若以5为半径作圆,⊙O恰好经过E、C、A,且∠CEA为一个圆周角,其对应圆心角恰为直角,则角度可求.
(3)面积的最值问题,一般都是通过动点运动找到面积和时间t之间的函数关系,再利用函数最值性质解决.本题中的△EMQ的底、高都不平行x轴或y轴,那如何简易的表示其面积呢?分割,这是函数综合题中常用的求三角形面积的方法,一般以其一个顶点做关于y轴的平行线,则三角形就分为两个底、高平行x轴或y轴的小三角形,如此最终表示大三角形面积.本题就可以用S△MEQ=S△QMD+S△EDM,结果易得.
解答:解:(1)设E(x,y),
∵直线y1=
1
2
x+
5
2
与直线y2=3x-5交于点E,
y=
1
2
x+
5
2
y=3x+5

解得
x=3
y=4

即E(3,4).

(2)如图,连接OE,过点E作EF⊥x轴于F,以O为圆心,CO的长为半径画圆.
在Rt△OEF中,
∵OF=3,EF=4,
∴OE=5.
∵直线y1=
1
2
x+
5
2
与x轴、y轴分别交于点C、D,
∴C(-5,0),D(0,
5
2
).
∵直线y2=3x-5与x轴、y轴分别交于点B、A,
∴A(0,-5),B(
5
3
,0).
∴CO=OA=OE=5,
∴A,E也都在⊙O上,
∴∠CEA=
1
2
∠COA=
1
2
•90°=45°


(3)如图,过点Q作QG⊥y轴于G,过点E作EH⊥y轴于H,
在Rt△COD中,
∵CO=5,OD=
5
2

∴CD=
5
2
2

∵QG∥CO,
QD
DC
=
QG
CO

∵QD=
5
t,
∴QG=2t.
∵PD=
9
2
-
5
2
=2,PM=t,
∴MD=2-t,
∴S△QMD=
1
2
QG•MD
=
1
2
•2t•(2-t)
=-t2+2t,
∵EF=3,
∴S△EDM=
1
2
EF•MD
=
1
2
•3•(2-t)
=-
3
2
t+3

∴S△MEQ=S△QMD+S△EDM=-t2+
t
2
+3
,(0≤t≤2).
∴根据二次函数最值性质,t=-
1
2
2•(-1)
=
1
4
时,S△MEQ最大.
点评:本题考查了函数图象与过其点的坐标的关系,也考查了圆的相关知识,这里提供了一种求角度的特殊思路,利用圆的特征来求,当然这需要足够的前提条件.最后一问的动点面积最值问题是一个非常常规的题,考试中常见,需要加强要求.总而言之,本题是一道质量很高的题目,同学们要深度体会其中运用的数学思想.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

若|x+2|=0,则x=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知△ABC中,∠ACB=90°,以△ABC的各边为边在△ABC外作三个正方形,S1,S2,S3分别表示这三个正方形的面积,S1=81,S2=225,则S3=(  )
A、16B、306
C、144D、12

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,⊙O内接△ABC,AB=AC,D是弧AC上一点,连接BD,E是BD上一点,且BE=CD.求证:∠AED=∠ADE.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,利用一面长为34米的墙,用铁栅栏围成一个矩形自行车场地ABCD,在AB和BC边各有一个2米宽的小门(不用铁栅栏)设矩形ABCD的边AD长为x米,AB长为y米,矩形的面积为S平方米,且x<y.
(1)若所用铁栅栏的长为40米,求y与x的函数关系式,并直接写出自变量x的取值范围:
(2)在(1)的条件下,求S与x的函数关系式,并求出怎样围才能使矩形场地的面积为192平方米?

查看答案和解析>>

科目:初中数学 来源: 题型:

如果抛物线C1的顶点在抛物线C2上,同时,抛物线C2的顶点在抛物线C1上,那么,我们称抛物线C1与C2关联.
(1)已知两条抛物线①:y=x2+2x-1,②:y=-x2+2x+1,判断这两条抛物线是否关联,并说明理由.
(2)抛物线C1:y=
1
8
(x+1)2-2,动点P的坐标为(t,2),将抛物线C1绕点P(t,2)旋转180°得到抛物线C2,若抛物线C2与C1关联,求抛物线C2的解析式.
(3)若A为抛物线C1:y=
1
8
(x+1)2-2的顶点,B是与C1关联的抛物线的顶点,将线段AB绕点A按顺时针方向旋转90°得到线段AB′,若点B′恰好在y轴上,求点B′的纵坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,以正方形ABCD的一边AB为斜边向外作Rt△AEB,过点E作EF⊥AB,连接EO
(1)若S△AEB=6,EF=2,求正方形ABCD的面积;
(2)求证:∠BEO=∠AEO.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,利用热气球探测器测量大楼AB的高度.从热气球P处测得大楼顶部B的俯角为37°,大楼底部A的俯角为60°,此时热气球P离地面的高度为120m.试求大楼AB的高度(精确到0.1m).(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,
3
≈1.73)

查看答案和解析>>

科目:初中数学 来源: 题型:

分解因式:(x2-y2)+(x+y)=
 

查看答案和解析>>

同步练习册答案