精英家教网 > 初中数学 > 题目详情

【题目】如图:ABC中,AB=AC,以AB为直径的⊙OBC相交于点D,与CA的延长线相交于点E,过点DDFAC于点F

1)试说明DF是⊙O的切线;

2)若AC=3AE,求DF:CF

【答案】1)见解析;(2

【解析】

1)连接OD,求出ODAC,求出DFOD,根据切线的判定得出即可;

2)连结BE,由AB是直径可知∠AEB=90°,由AC=3AE可得AB=AC=3AEEC=4AE,再证明△CFD∽△CEB,得到,即可求出.

1)连接OD

OB=OD

∴∠B=ODB

AB=AC

∴∠B=C

∴∠ODB=C

ODAC

DFAC

ODDF,点D在⊙O上,

DF是⊙O的切线;

2)连接BE

AB是直径,

∴∠AEB=90°,

AB=ACAC=3AE

AB=3AECE=4AE

BE=

DF⊥CE

∴DF∥BE

△CFD∽△CEB

.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某种商品每天的销售利润(元)与销售单价(元)之间满足关系:,其图像如图所示.

1)销售单价为多少元时,这种商品每天的销售利润最大?最大利润为多少元?

2)若该商品每天的销售利润不低于12元,则销售单价的取值范围是_____.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某超市销售一种商品,每件的成本每千克18元,规定每千克售价不低于成本,且获利不得高于100%,经市场调查,每天的销售量y(千克)与每千克售价x()满足一次函数关系,部分数据如下表:

售价x(/千克)

40

39

38

37

销售量y(千克)

20

22

24

26

(1)yx之间的函数表达式;

(2)设商品每天的总利润为W(),求Wx之间的函数表达式(利润=收入﹣成本),并指出售价为多少元时获得最大利润,最大利润是多少?

(3)该超市若想每天销售利润不低于480元,请结合函数图象帮助超市确定产品的销售单价范围?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABC的顶点ABC的坐标分别是A(﹣1,﹣1),B(﹣4,﹣1),C(﹣4,﹣3).

1)作出ABC关于原点O中心对称的图形A1B1C1,并写出点B的对应点B1的坐标;

2)作出A1B1C1绕原点O顺时针旋转90°后的图形A2B2C2,并写出点C1的对应点C2的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,CE是DCB的角平分线,且交AB于点E,DB与CE相交于点O,

(1)求证:EBC是等腰三角形;

(2)已知:AB=7,BC=5,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】端午节放假期间,小明和小华准备到宜宾的蜀南竹海(记为A)、兴文石海(记为B)、夕佳山民居(记为C)、李庄古镇(记为D)的一个景点去游玩,他们各自在这四个景点中任选一个,每个景点都被选中的可能性相同.

(1)小明选择去蜀南竹海旅游的概率为

(2)用树状图或列表的方法求小明和小华都选择去兴文石海旅游的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一块长5米宽4米的地毯,为了美观设计了两横、两纵的配色条纹(图中阴影部分),已知配色条纹的宽度相同,所占面积是整个地毯面积的

(1)求配色条纹的宽度;

(2)如果地毯配色条纹部分每平方米造价200元,其余部分每平方米造价100元,求地毯的总造价.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,下图是水平放置的破裂管道有水部分的截面.

⑴请你补全这个输水管道的圆形截面;

⑵若这个输水管道有水部分的水面宽AB=16cm,水面最深地方的高度为4cm,求这个圆形截面的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,点E、F分别在BC和CD上,AE=AF.

1求证:CE=CF.

(2)连接AC交EF于点O,延长OC至点M,使OM=OA,连接EM、FM.判断四边形AEMF是什么特殊四边形?并证明你的结论.

查看答案和解析>>

同步练习册答案