【题目】如图,⊙O的半径OA⊥OC,点D在上,且=2,OA=4.
(1)∠COD= °;
(2)求弦AD的长;
(3)P是半径OC上一动点,连结AP、PD,请求出AP+PD的最小值,并说明理由.
(解答上面各题时,请按题意,自行补足图形)
【答案】(1)30;(2)弦AD长为4;(3)AP+PD的最小值为,理由见解析.
【解析】(本小题满分12分)
解:(1)30;……………………………………………………………………1分
(2)连结OD、AD(如图2).
∵OA⊥OC,∴∠AOC=90°.∵=2,
设所对的圆心角∠COD=,………………………………………………1分
则∠AOD=,…………………………………………………………………2分
由∠AOD+∠DOC=90°,
得+=90°,∴=30°,=60°,…………………………3分
即∠AOD=60°,又∵OA=OD,∴△AOD为等边三角形,…………4分
∴AD=OA=4;…………………………………………………………………5分
(3)过点D作DE⊥OC,交⊙O于点E,……………………………………1分
连结AE,交OC于点P(如图3),………………………………………………2分
则此时,AP+PD的值最小.
∵根据圆的对称性,点E是点D关于OC的对称点,
OC是DE的垂直平分线,即PD=PE.………………………………………3分
∴AP+PD=AP+PE=AE,
若在OC上另取一点F,连结AF、FD及EF,
在△AFE中,AF+FE>AE,
即AF+FE>AP+PD,
∴可知AP+PD最小.…………………………………………………………4分
∵∠AED=∠AOD=30°,
又∵OA⊥OC,DE⊥OC,∴OA∥DE,
∴∠OAE=∠AED=30°.
延长AO交⊙O于点B,连结BE,∵AB为直径,
∴△ABE为直角三角形.由=cos∠BAE,……………………………5分
得AE=AB·cos30°=2×4×=,……………………………6分
即AP+PD=,
[也可利用勾股定理求得AE]
科目:初中数学 来源: 题型:
【题目】已知两个正数a,b,可按规则c=ab+a+b扩充为一个新数c,在a,b,c三个数中取两个较大的数,按上述规则扩充得到一个新数,依次下去,将每扩充一次得到一个新数称为一次操作。
(1)若a=1,b=3,按上述规则操作3次,扩充所得的数是__________;
(2)若p>q>0,经过3次操作后扩充所得的数为(m,n为正整数),则m,n的值分别为__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个两位数是a,在它的左边加上一个数字b变成一个三位数,则这个三位数用代数式表示为( )
A. 10a+100b B. ba C. 100ba D. 100b+a
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,D为BC边上的点,∠CAD=∠CDA,E为AB边的中点.
(1)尺规作图:作∠C的平分线CF,交AD于点F(保留作图痕迹,不写作法);
(2)连结EF,EF与BC是什么位置关系?为什么?
(3)若四边形BDFE的面积为9,求△ABD的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】解放中学为了了解学生对新闻、体育、动画、娱乐四类电视节目的喜爱程度,随机抽取了部分学生进行调查(每人限选1项),现将调查结果绘制成如下两幅不完整的统计图,根据图中所给的信息解答下列问题.
(1)喜爱动画的学生人数和所占比例分别是多少?
(2)请将条形统计图补充完整;
(3)若该校共有学生1000人,依据以上图表估计该校喜欢体育的人数约为多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com