【题目】按要求解答:
(1)计算: ;
(2)因式分解: ;
(3)先化简,再求值: ,其中 .
【答案】
(1)
(2)
解:a2-ab
=a(a-b)
(3)
解:(x+2)2-x(x-2)
由 得,原式
【解析】(1)根据零指数次幂和负整数次幂计算;
(2)利用提公因式法分解因式,注意检查分解到不能再分解为止;
(3)利用完全平方公式和整式的混合运算化简求值即可.
【考点精析】通过灵活运用零指数幂法则和整数指数幂的运算性质,掌握零次幂和负整数指数幂的意义: a0=1(a≠0);a-p=1/ap(a≠0,p为正整数);aman=am+n(m、n是正整数);(am)n=amn(m、n是正整数);(ab)n=anbn(n是正整数);am/an=am-n(a不等于0,m、n为正整数);(a/b)n=an/bn(n为正整数)即可以解答此题.
科目:初中数学 来源: 题型:
【题目】如图,已知线段AB,按下列要求完成画图和计算:
(1)延长线段AB到点C,使BC=2AB,取AC中点D;
(2)在(1)的条件下,如果AB=4,求线段BD的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙O的半径OA⊥OC,点D在上,且=2,OA=4.
(1)∠COD= °;
(2)求弦AD的长;
(3)P是半径OC上一动点,连结AP、PD,请求出AP+PD的最小值,并说明理由.
(解答上面各题时,请按题意,自行补足图形)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数=++的顶点M是直线=-和直线=+的交点.
(1)若直线=+过点D(0,-3),求M点的坐标及二次函数=++的解析式;
(2)试证明无论取任何值,二次函数=++的图象与直线=+总有两个不同的交点;
(3)在(1)的条件下,若二次函数=++的图象与轴交于点C,与的右交点为A,试在直线=-上求异于M的点P,使P在△CMA的外接圆上.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,OD平分∠BOC,OE平分∠AOC.若∠BOC=70°,∠AOC=50°.
(1)求出∠AOB及其补角的度数;
(2)请求出∠DOC和∠AOE的度数,并判断∠DOE与∠AOB是否互补,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com