【题目】已知两个正数a,b,可按规则c=ab+a+b扩充为一个新数c,在a,b,c三个数中取两个较大的数,按上述规则扩充得到一个新数,依次下去,将每扩充一次得到一个新数称为一次操作。
(1)若a=1,b=3,按上述规则操作3次,扩充所得的数是__________;
(2)若p>q>0,经过3次操作后扩充所得的数为(m,n为正整数),则m,n的值分别为__________.
【答案】(1)255;(2)3,2
【解析】(1)a=1,b=3,按规则操作三次,第一次:c1=7;第二次c2=31;第三次c3=255;
(2)p>q>0,第一次得:c1=pq+p+q=(q+1)(p+1)1;第二次得c2=(c1+1)(p+1)1= (p+1)2(q+1)1;所得新数大于任意旧数,第三次可得c3=(c2+1)(c1+1)1=(p+1)3(q+1)21;故可得结论.
解: (1)a=1,b=3,按规则操作三次,
第一次:c1=ab+a+b=1×3+1+3=7;
第二次,7>3>1所以有:c2=3×7+3+7=31;
第三次:31>7>3所以有:c3=7×31+7+31=255;
(2)p>q>0,第一次得:c1=pq+p+q=(q+1)(p+1)1;
因为c>p>q,所以第二次得:c2=(c1+1)(p+1)1=(pq+p+q)p+p+(pq+p+q)=(p+1)2(q+1)1;
所得新数大于任意旧数,所以第三次可得c3=(c2+1)(c1+1)1=(p+1)3(q+1)21
∴m=3,n=2,
科目:初中数学 来源: 题型:
【题目】如图,已知线段AB,按下列要求完成画图和计算:
(1)延长线段AB到点C,使BC=2AB,取AC中点D;
(2)在(1)的条件下,如果AB=4,求线段BD的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某种药品原价为40元/盒,经过连续两次降价后售价为28元/盒,设平均每次降价的百分率为x,根据题意所列方程正确的是( )
A.40(1﹣x)2=40﹣28
B.40(1﹣2x)=28
C.40(1﹣x)2=28
D.40(1﹣x2)=28
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平行四边形ABCD的面积为acm2 , 对角线交于点O;以AB、AO为邻边作平行四边形AOC1B,连接AC1交BD于O1 , 以AB、AO1为邻边作平行四边形AO1C2B;…;依此类推,则平行四边形AOn﹣1CnB的面积为( )cm2 .
A.a
B. a
C. a
D.a
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知在△ABC中,∠BAC的平分线与线段BC的垂直平分线PQ相交于点P,过点P分别作PN垂直于AB于点N,PM垂直于AC于点M,BN和CM有什么数量关系?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙O的半径OA⊥OC,点D在上,且=2,OA=4.
(1)∠COD= °;
(2)求弦AD的长;
(3)P是半径OC上一动点,连结AP、PD,请求出AP+PD的最小值,并说明理由.
(解答上面各题时,请按题意,自行补足图形)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数=++的顶点M是直线=-和直线=+的交点.
(1)若直线=+过点D(0,-3),求M点的坐标及二次函数=++的解析式;
(2)试证明无论取任何值,二次函数=++的图象与直线=+总有两个不同的交点;
(3)在(1)的条件下,若二次函数=++的图象与轴交于点C,与的右交点为A,试在直线=-上求异于M的点P,使P在△CMA的外接圆上.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com