【题目】正六边形ABCDEF的边长为cm,点P为ABCDEF内的任意一点,点P到正六边形ABCDEF各边所在直线的距离之和为s,则s=_____cm.
【答案】18
【解析】过P作AB的垂线,交AB、DE分别为H、K,连接BD,由正六边形的性质可知AB∥DE,AF∥CD,BC∥EF,故HK⊥DE,过C作CG⊥BD,由等腰三角形的性质及正六边形的内角和定理可知,DB⊥AB⊥DE,再由锐角三角函数的定义可求出BG的长,进而可求出BD的长,由正六边形的性质可知点P到AF与CD的距离和及P到EF、BC的距离和均为BD的长,故可得出结论.
过P作AB的垂线,交AB、DE分别为H、K,连接BD,
∵六边形ABCDEF是正六边形,
∴AB∥DE,AF∥CD,BC∥EF,且P到AF与CD的距离和及P到EF、BC的距离和均为HK的长, ∵BC=CD,∠BCD=∠ABC=∠CDE=120°, ∴∠CBD=∠BDC=30°,
∴BD∥HK,且BD=HK, ∵CG⊥BD, ∴BD=2BG=2×BC×cos∠CBD=2×2×=6,
∴点P到各边距离之和为3BD=3×6=18.
科目:初中数学 来源: 题型:
【题目】如图是一个长方体纸盒的平面展开图,已知纸盒中相对两个面上的数互为相反数.
(1)填空:a= ,b= ,c= ;
(2)先化简,再求值:5a2b﹣[2a2b﹣3(2abc﹣a2b)]+4abc.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有两个可以自由转动的均匀转盘,都被分成了3等份,并在每份内均标有数字,如图所示.规则如下:
①分别转动转盘;
②两个转盘停止后,将两个指针所指份内的数字相乘(若指针停止在等份线上,那么重转一次,直到指针指向某一份为止).
【1】用列表法或树状图分别求出数字之积为3的倍数和数字之积为5的倍数的概率;
【2】小明和小亮想用这两个转盘做游戏,他们规定:数字之积为3的倍数时,小明得2分;数字之积为5的倍数时,小亮得3分.这个游戏对双方公平吗?请说明理由;认为不公平的,试修改得分规定,使游戏对双方公平.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直线交轴于点,交轴于点,点,是直线上的一个动点.
(1)求点的坐标,并求当时点的坐标;
(2)如图,以为边在上方作正方形,请画出当正方形的另一顶点也落在直线上的图形,并求出此时点的坐标;
(3)当点在上运动时,点是否也在某个函数图象上运动?若是请直接写出该函数的解析式;若不在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】点在直线上,射线在直线的上方,且
(1)如图1,在内部,且平分
①若=,则= .
②若=,则= .
③若=,则= °(用含的式子表示)
(2)当在内部,且平分时,请画出图形;此时,与有怎样的数量关系?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】超速行驶是引发交通事故的主要原因.上周末,小明和三位同学尝试用自己所学的知识检测车速,如图,观测点设在到永丰路的距离为100米的点P处.这时,一辆小轿车由西向东匀速行驶,测得此车从A处行驶到B处所用的时间为4秒,,.
(1)求A、B之间的路程;
(2)请判断此车是否超过了永丰路每小时54千米的限制速度?(参考数据:)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】先阅读下列的解题过程,然后回答下列问题.
例:解绝对值方程:.
解:讨论:①当时,原方程可化为,它的解是;
②当时,原方程可化为,它的解是.
原方程的解为或.
(1)依例题的解法,方程算的解是_______;
(2)尝试解绝对值方程:;
(3)在理解绝对值方程解法的基础上,解方程:.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线AB、CD相交于点O,∠BOE=90°,OM平分∠AOD,ON平分∠DOE.
(1)若∠MOE=27°,求∠AOC的度数;
(2)当∠BOD=x°(0<x<90)时,求∠MON的度数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com