精英家教网 > 初中数学 > 题目详情

【题目】如图,正方形中,经顺时针旋转后与重合.

1)旋转中心是点 ,旋转了 度;

2)如果,求的长.

【答案】1A90;(2.

【解析】

1)根据正方形的性质得AB=AD,∠BAD=90°,则根据旋转的定义得到△ADE绕点A顺时针旋转90°后与△ABF重合;
2)根据旋转的性质得BF=DESABF=SADE,利用CF=CB+BF=8得到BC+DE=8,再加上CE=CD-DE=BC-DE=4,于是可计算出BC=6,于是得到结论.

解:(1)∵四边形ABCD为正方形,
AB=AD,∠BAD=90°
∴△ADE绕点A顺时针旋转90°后与△ABF重合,
即旋转中心是点A,旋转了90度;
故答案为A90
2)∵△ADE绕点A顺时针旋转90°后与△ABF重合,
BF=DESABF=SADE
CF=CB+BF=8
BC+DE=8
CE=CD-DE=BC-DE=4
BC=6
AC= BC=6

故答案为:(1A90;(2.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】为推进传统文化进校园活动,某校准备成立经典诵读传统礼仪民族器乐地方戏曲等四个课外活动小组.学生报名情况如图(每人只能选择一个小组):

1)报名参加课外活动小组的学生共有 人,将条形图补充完整;

2)扇形图中m= n=

3)根据报名情况,学校决定从报名经典诵读小组的甲、乙、丙、丁四人中随机安排两人到地方戏曲小组,甲、乙恰好都被安排到地方戏曲小组的概率是多少?请用列表或画树状图的方法说明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某地的一种绿色蔬菜,在市场上若直接销售,每吨利润为1000元,经粗加工后销售,每吨利润4000元,经精加工后销售, 每吨利润为7000元.当地一家公司现有这种蔬菜140吨,该公司加工厂的生产能力是:如果对蔬菜进行粗加工,每天可加工16吨, 如果对蔬菜进行精加工,每天可加工6吨,但每天两种方式不能同时进行.受季节等条件的限制,必须用15天时间将这批蔬菜全部销售或加工完毕.为此,公司研制了三种方案:

方案1:将蔬菜全部进行粗加工;

方案2:尽可能地对蔬菜进行精加工,没来得及加工的蔬菜,在市场上直接出售;

方案3:将一部分蔬菜进行精加工, 其余蔬菜进行粗加工,并刚好15天完成.

如果你是公司经理,你会选择哪一种方案? 请通过计算说明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,有一张边长为6的正方形纸片ABCDPAD边上一点(不与点AD重合),将正方形纸片沿EF折叠,使点B落在点P处,点C落在点G处,PGDCH,连接BP

1)求证:∠APB=∠BPH

2)若PAD中点,求四边形EFGP的面积;

3)当点P在边AD上移动时,△PDH的周长是否发生变化?写出你的结论并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:若抛物线L2y=mx2+nxm≠0)与抛物线L1y=ax2+bxa≠0)的开口大小相同,方向相反,且抛物线L2经过L1的顶点,我们称抛物线L2L1友好抛物线”.

(1)若L1的表达式为y=x2﹣2x,求L1友好抛物线的表达式;

(2)已知抛物线L2y=mx2+nxL1y=ax2+bx友好抛物线.求证:抛物线L1也是L2友好抛物线”;

(3)平面上有点P(1,0),Q(3,0),抛物线L2y=mx2+nxL1y=ax2友好抛物线,且抛物线L2的顶点在第一象限,纵坐标为2,当抛物线L2与线段PQ没有公共点时,求a的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等腰中,,点EAC且不与点AC重合,在的外部作等腰,使,连接AD,分别以ABAD为邻边作平行四边形ABFD,连接AF

请直接写出线段AFAE的数量关系;

绕点C逆时针旋转,当点E在线段BC上时,如图,连接AE,请判断线段AFAE的数量关系,并证明你的结论;

,在图的基础上将绕点C继续逆时针旋转一周的过程中,当平行四边形ABFD为菱形时,直接写出线段AE的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】正六边形ABCDEF的边长为cm,点P为ABCDEF内的任意一点,点P到正六边形ABCDEF各边所在直线的距离之和为s,则s=_____cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】四边形为正方形,点为线段上一点,连接,过点,交射线于点,以为邻边作矩形,连接.

1)如图,求证:矩形是正方形;

2)当线段与正方形的某条边的夹角是时,求的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AB-1,2)是一次函数与反比例函数

)图象的两个交点,AC⊥x轴于CBD⊥y轴于D

(1)根据图象直接回答:在第二象限内,当x取何值时,一次函数大于反比例函数的值?

(2)求一次函数解析式及m的值;

(3)P是线段AB上的一点,连接PCPD,若△PCA△PDB面积相等,求点P坐标.

查看答案和解析>>

同步练习册答案