【题目】如图,已知A,B(-1,2)是一次函数与反比例函数
()图象的两个交点,AC⊥x轴于C,BD⊥y轴于D.
(1)根据图象直接回答:在第二象限内,当x取何值时,一次函数大于反比例函数的值?
(2)求一次函数解析式及m的值;
(3)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P坐标.
【答案】(1)当﹣4<x<﹣1时,一次函数大于反比例函数的值;
(2)一次函数的解析式为y=x+;m=﹣2;
(3)P点坐标是(﹣,).
【解析】
试题(1)根据一次函数图象在反比例函数图象上方的部分是不等式的解,观察图象,可得答案;
(2)根据待定系数法,可得函数解析式以及m的值;
(3)设P的坐标为(x,x+)如图,由A、B的坐标可知AC=,OC=4,BD=1,OD=2,易知△PCA的高为x+4,△PDB的高(2﹣x﹣),由△PCA和△PDB面积相等得,可得答案.
试题解析:(1)由图象得一次函数图象在反比例函数图象上方时,﹣4<x<﹣1,
所以当﹣4<x<﹣1时,一次函数大于反比例函数的值;
(2)设一次函数的解析式为y=kx+b,
y=kx+b的图象过点(﹣4,),(﹣1,2),则
,
解得
一次函数的解析式为y=x+,
反比例函数y=图象过点(﹣1,2),
m=﹣1×2=﹣2;
(3)连接PC、PD,如图,设P的坐标为(x,x+)如图,由A、B的坐标可知AC=,OC=4,BD=1,OD=2,易知△PCA的高为x+4,△PDB的高(2﹣x﹣),由△PCA和△PDB面积相等得
××(x+4)=×|﹣1|×(2﹣x﹣),
x=﹣,y=x+=,
∴P点坐标是(﹣,).
科目:初中数学 来源: 题型:
【题目】如图所示的曲线是函数y= (m为常数)图象的一支.
(1)求常数m的取值范围;
(2)若该函数的图象与正比例函数y=2x的图象在第一象限的交点为A(2,n),求点A的坐标及反比例
函数的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直线经过点和,分别与x轴、y轴交于A、B两点.
(1)求直线的解析式:
(2)若把横、纵坐标均为整数的点称为格点,则图中阴影部分(不包括边界)所含格点的个数有 个;
(3)作出点关于直线的对称点,则点的坐标为 ;
(4)若在直线和轴上分别存在一点使的周长最短,请在图中标出点(不写作法,保留痕迹).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】图 1 是小红在“淘宝双 11”活动中所购买的一张多档位可调节靠椅,档位调节示意图如图 2 所示。已知两支脚 AB=AC,O 为 AC 上固定连接点,靠背 OD=10 分米。档位为Ⅰ档时,OD∥AB,档位为Ⅱ挡时,OD’⊥AC,过点O作OG∥BC,则∠DOG+∠D’OG=_________°当靠椅由Ⅰ档调节为Ⅱ档时,靠背顶端 D 向后靠至 D’,此时点 D 移动的水平距离是 2 分米,即 ED’=2 分米。DH⊥OG于点H,则D到直线OG的距离为_________ 分米.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,足球场上守门员在O处开出一高球,球从离地面1m的A处飞出(A在y轴上),运动员乙在距O点6m的B处发现球在自己头的正上方达到最高点M,距地面约4m高.球第一次落地后又弹起.据试验,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.
(1)求足球开始飞出到第一次落地时,该抛物线的表达式;
(2)运动员乙要抢到第二个落点D,他应再向前跑多少米?(取, )
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在ABCD中, 对角线AC、BD相交于点O. E、F是对角线AC上的两个不同点,当E、F两点满足下列条件时,四边形DEBF不一定是平行四边形( ).
A.AE=CFB.DE=BFC.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了改进银行的服务质量,随机抽随机抽查了名顾客,统计了顾客在窗口办理业务所用的时间(单位:分钟)下图是这次调查得到的统计图。
请你根据图中的信息回答下列问题:
(1)求办理业务所用的时间为分钟的人教;
(2)补全条形统计图;
(2)求这名顾客办理业务所用时间的平均数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学为打造书香校园,计划购进甲、乙两种规格的书柜放置新购进的图书,调查发现,若购买甲种书柜个、乙种书柜个,共需资金元;若购买甲种书柜个,乙种书柜个,共需资金元
(1)甲、乙两种书柜每个的价格分别是多少元?
(2)若该校计划购进这两种规格的书柜共个,学校至多能够提供资金元,请设计几种购买方案供这个学校选择.(两种规格的书柜都必须购买)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】西南大学附中初2020级小李同学想利用学过的知识测量棵树的高度,假设树是竖直生长的,用图中线段AB表示,小李站在C点测得∠BCA=45°,小李从C点走4米到达了斜坡DE的底端D点,并测得∠CDE=150°,从D点上斜坡走了8米到达E点,测得∠AED=60°,B,C,D在同一水平线上,A、B、C、D、E在同一平面内,则大树AB的高度约为( )米.(结果精确到0.1米,参考数据:≈1.41,≈1.73)
A.24.3B.24.4C.20.3D.20.4
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com