【题目】西南大学附中初2020级小李同学想利用学过的知识测量棵树的高度,假设树是竖直生长的,用图中线段AB表示,小李站在C点测得∠BCA=45°,小李从C点走4米到达了斜坡DE的底端D点,并测得∠CDE=150°,从D点上斜坡走了8米到达E点,测得∠AED=60°,B,C,D在同一水平线上,A、B、C、D、E在同一平面内,则大树AB的高度约为( )米.(结果精确到0.1米,参考数据:≈1.41,≈1.73)
A.24.3B.24.4C.20.3D.20.4
【答案】B
【解析】
过E作EG⊥AB于G,EF⊥BD于F,则BG=EF,EG=BF,求得∠EDF=30°,根据直角三角形的性质得到EF=DE=4,DF=4,得到CF=CD+DF=4+4,根据三角函数的定义列方程即可得到结论.
过E作EG⊥AB于G,EF⊥BD于F,
则BG=EF,EG=BF,
∵∠CDE=150°,
∴∠EDF=30°,
∵DE=8,
∴EF=DE=4,DF=4,
∴CF=CD+DF=4+4,
∵∠ABC=90°,∠ACB=45°,
∴AB=BC,
∴GE=BF=AB+4+4,AG=AB﹣4,
∵∠AED=60°,∠GED=∠EDF=30°,
∴∠AEG=30°,
∴tan30°= ,
解得:AB=14+6≈24.4,
故选:B.
科目:初中数学 来源: 题型:
【题目】如图,已知A,B(-1,2)是一次函数与反比例函数
()图象的两个交点,AC⊥x轴于C,BD⊥y轴于D.
(1)根据图象直接回答:在第二象限内,当x取何值时,一次函数大于反比例函数的值?
(2)求一次函数解析式及m的值;
(3)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,AB=1,BC=2,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B′处.当△CEB′为直角三角形时,BE的长为___________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线与x轴的另一个交点为A,顶点为P.
(1)求该抛物线的解析式;
(2)连接AC,在x轴上是否存在点Q,使以P、B、Q为顶点的三角形与△ABC相似?若存在,请求出点Q的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一辆汽车往返于甲、乙两地之间,如果汽车以50千米/时的平均速度从甲地出发,则经过6小时可到达乙地.
(1)甲、乙两地相距多少千米?
(2)如果汽车把速度提高到 v(千米/时),那么从甲地到乙地所用时间 t(小时)将怎样变化?
(3)写出 t与 v之间的函数关系式;
(4)因某种原因,这辆汽车需在5小时内从甲地到达乙地,则此时汽车的平均速度至少应是多少?
(5)已知汽车的平均速度最大可达80千米/时,那么它从甲地到乙地最快需要多长时间?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】学校锅炉旁建有一个储煤库,开学初购进一批煤,现在知道:按每天用煤0.6吨计算,一学期(按150天计算)刚好用完.若每天的耗煤量为 x吨,那么这批煤能维持 y天.
(1)则 y与 x之间有怎样的函数关系?
(2)画出此函数的图象.
(3)若每天节约0.1吨,则这批煤能多维持多少天?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y1=﹣x2+bx+c的图象与x轴、y轴分别交于点A(﹣1,0)和点B(0,2),图象的对称轴交x轴于点C,一次函数y2=mx+n的图象经过点B、C.
(1)求二次函数的解析式y1和一次函数的解析式y2;
(2)点P在x轴下方的二次函数图象上,且S△ACP=33,求点P的坐标;
(3)结合图象,求当x取什么范围的值时,有y1≤y2.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,每个图案都由若干个“●”组成,其中第①个图案中有7个“●”,第②个图案中有13个“●”,…,则第⑨个图案中“●”的个数为( )
A.87B.91C.103D.111
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在四边形中,,点在边上,平分,且.
(1)求证:;
(2)如图2,已知交边于点,交边的延长线于点,且平分. 若,试比较与的大小,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com