精英家教网 > 初中数学 > 题目详情
29、如图所示,以△ABC的三边为边在BC的同侧分别作三个等边三角形△ABD、△BCE、△ACF,猜想:四边形ADEF是什么四边形,试证明你的结论.
分析:已知三个三角形均是等边三角形则每个三角形的各边,各角均相等,根据全等三角形的判定可得出答案.△ABC≌△DBE,△ABC≌△FEC从而得到全等三角形的对应边相等,根据两组对边分别相等的四边形是平行四边形来判定四边形ADEF是平行四边形.
解答:证明:四边形ADEF是平行四边形.
连接ED、EF,
∵△ABD、△BCE、△ACF分别是等边三角形,
∴AB=BD,BC=BE,∠DBA=∠EBC=60°.
∴∠DBE=∠ABC.
∴△ABC≌△DBE.
同理可证△ABC≌△FEC,
∴AB=EF,AC=DE.
∵AB=AD,AC=AF,
∴AD=EF,DE=AF.
∴四边形ADEF是平行四边形.
点评:此题考查了学生对等边三角形的性质,全等三角形的判定及平行四边形的判定等知识点的综合运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

30、如图所示,以△ABC的三边为边,分别作三个等边三角形.
(1)求证四边形ADEF是平行四边形;
(2)△ABC满足什么条件时,四边形ADEF是菱形是矩形?
(3)这样的平行四边形ADEF是否总是存在?

查看答案和解析>>

科目:初中数学 来源: 题型:

24、已知:如图所示,以△ABC的三边为边,在BC的同侧分别作等边△ABD、△BCE、△ACF.
(1)你认为四边形ADEF是什么四边形?写出你的猜想并说明理由.
(2)当△ABC满足什么条件时,四边形ADEF成为矩形?(写出条件,不要求证明)
(3)当△ABC满足什么条件时,四边形ADEF成为菱形?(写出条件,不要求证明)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,以△ABC的三边为边在BC的同侧作正三角形BCE,正三角形ABF和正三角形ACD,已知BC=3,高AH=1,则五边形BCDEF的面积是
 

查看答案和解析>>

科目:初中数学 来源:同步题 题型:解答题

(1)如图①所示,以△ABC的边AB、AC为边分别向外作正方形ABDE和正方形ACFG,连接EG,试判断△ABC与△AEG面积之间的关系,并说明理由。

                 ①                                  ②
 (2)园林小路,曲径通幽,如图②所示,小路由白色的正方形大理石和黑色的三角形大理石铺成,已知中间的所有正方形的面积之和是a平方米,内圈的所有三角形的面积之和是6平方米,这条小路一共占地多少平方米?

查看答案和解析>>

同步练习册答案