精英家教网 > 初中数学 > 题目详情
13.如图,在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在边DC,CB上移动,连接AE和DF交于点P,由于点E,F的移动,使得点P也随之运动.若AD=2,线段CP的最小值是$\sqrt{5}$-1.

分析 先证得点P在运动中保持∠APD=90°,从而得出点P的路径是一段以AD为直径的弧,连接AD的中点和C的连线交弧于点P,此时CP的长度最小,然后根据勾股定理求得QC,即可求得CP的长.

解答 解:如图:在△ADE和△DCF中,
$\left\{\begin{array}{l}{AD=DC}\\{∠ADE=∠DCF}\\{DE=CF}\end{array}\right.$,
∴∠DAE=∠CDF(SAS),
∵∠DAE+∠AED=90°,
∴∠CDF+∠AED=90°,
∴∠DPE=∠APD=90°,
由于点P在运动中保持∠APD=90°,
∴点P的路径是一段以AD为直径的弧,
设AD的中点为Q,连接QC交弧于点P,此时CP的长度最小,
在Rt△QDC中,QC=$\sqrt{C{D}^{2}+Q{D}^{2}}=\sqrt{{2}^{2}+{1}^{2}}=\sqrt{5}$,
∴CP=QC-QP=$\sqrt{5}-1$.
故答案为$\sqrt{5}$-1.

点评 本题考查了正方形的性质,勾股定理,圆周角定理,全等三角形的性质和判定,能综合运用性质进行推理是解此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

3.已知等腰三角形的周长为20,底边长为y,腰长为x,写出y与x的函数关系式为y=20-2x(5<x<10).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.如图,把∠AOB沿着直线MN平移一定的距离,得到∠CPD,若∠AOM=40°,∠DPN=40°,则∠AOB=100°.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.如图,若BC∥DE,$\frac{AB}{AD}$=$\frac{3}{4}$,S△ABC=4,则四边形BCED的面积S四边形DBCE=$\frac{28}{9}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.如图,正方形ABCD的边长为3,点E,F分别在边AB、BC上,AE=BF=1,小球P从点E出发沿直线EF向点F运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角.当小球P第一次碰到点E时,小球P所经过的路程长为(  )
A.12B.9C.4$\sqrt{5}$D.6$\sqrt{5}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,线段EF经过菱形ABCD的顶点C,分别交AB、AD的延长线于E、F两点,已知∠ADC=3∠BCE.
(1)如图1,若∠A=90°,求证:FC=2CD;
(2)如图2,求证:AB2=BE•DF;
(3)若DF=3,AD=$\sqrt{3}$,则EF的长为2+2$\sqrt{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.经市场调查,某种商品在第x天的售价与销量的相关信息如下表;已知该商品的进价为每件30元,设销售该商品每天的利润为y元.
(1)求出y与x的函数关系式
(2)问销售该商品第几天时,当天销售利润最大?最大利润是多少?
(3)该商品销售过程中,共有多少天日销售利润不低于4800元?直接写出答案.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.若一组数据x1,x2,x3,x4,x5的平均数为2,方差为$\frac{1}{3}$,则:
(1)数据x1-3,x2-3…x5-3的平均数是-1,方差是$\frac{1}{3}$;
(2)数据2x1+1,2x2+1…2x5+1的平均数是5,方差是$\frac{4}{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.“保护环境,人人有责”,为了了解某市的空气质量情况,某校环保兴趣小组,随机抽取了2014年内该市若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).
请你根据图中提供的信息,解答下列问题:
(1)补全条形统计图;
(2)估计该市这一年(365天)空气质量达到“优”和“良”的总天数;
(3)计算随机选取这一年内某一天,空气质量是“优”的概率.

查看答案和解析>>

同步练习册答案