精英家教网 > 初中数学 > 题目详情
25、如图,直线l1、l2相交于点A,点B、点C分别在直线l1、l2上,AB=k•AC,连接BC,点D是线段AC上任意一点(不与A、C重合),作∠BDE=∠BAC=α,与∠ECF的一边交于点E,且∠ECF=∠ABC.
(1)如图1,若k=1,且∠α=90°时,猜想线段BD与DE的数量关系,并加以证明;
(2)如图2,若k≠1,且∠α≠90°时,猜想线段BD与DE的数量关系,并加以证明.
分析:(1)连接BE.若k=1,且∠α=90°时,要求线段BD与DE的数量关系,可以通过证明△BED∽△BCA得出;
(2)连接BE.若k≠1,且∠α≠90°时,要求线段BD与DE的数量关系,可以通过证明△BED∽△BCA得出.
解答:证明:(1)连接BE.
∵∠ECF=∠ABC,
∠ECF+∠BCE+∠BCA=∠ABC+∠BAC+∠BCA=180°,
∴∠BCE=∠BAC;
∵∠BDE=∠BAC=α=90°,
∴B、E、D、C四点共圆,
∴∠BED=∠BCA,
∴△BED∽△BCA,
∴BD:DE=AB:AC=k=1,
∴BD=DE.

(2)连接BE.
∵∠ECF=∠ABC,
∠ECF+∠BCE+∠BCA=∠ABC+∠BAC+∠BCA=180°,
∴∠BCE=∠BAC;
∵∠BDE=∠BAC=α,
∴B、E、D、C四点共圆,
∴∠BED=∠BCA,
∴△BED∽△BCA,
∴BD:DE=AB:AC=k,
∴BD=k•DE.
点评:本题考查了圆周角定理,相似三角形的判定和性质,综合性较强,有一定的难度.解题的关键是确定B、E、D、C四点共圆.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,直线L1,L2相交于A,L1与x轴的交点坐标为(-1,0),L2与y轴的交点坐标为(0,精英家教网-2),结合图象解答下列问题:
(1)求出直线L2表示的一次函数的表达式
 

(2)当x满足
 
时,L1,L2表示两个一次函数的函数值都大于0.

查看答案和解析>>

科目:初中数学 来源: 题型:

4、如图,直线l1,l2,l3相交于一点,则下列答案中,全对的一组是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,直线l1与l2相交于点O,OM⊥l1,若∠α=44°,则∠β等于
46°
46°

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,直线l1、l2、l3分别过正方形ABCD的三个顶点A,B,D,且相互平行,若l1与l2的距离为1,l2与l3的距离为1,则该正方形的面积是
5
5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,直线l1与l2相交于点P,l1的函数表达式y=kx+b,且经过(1,7)和(-3,-1)两点,点P的横坐标为-1,且l2交y轴于点A(0,-1).
(1)求直线l2的函数表达式.
(2)若点(a,2)在直线L2图象上,求a的值.

查看答案和解析>>

同步练习册答案