精英家教网 > 初中数学 > 题目详情
阅读材料:如图①,一扇窗户打开后用窗钩可将其固定.

(1)这里所运用的几何原理是(   )
A.三角形的稳定性B.两点之间线段最短
C.两点确定一条直线D.垂线段最短
(2)如图②是图①中窗子开到一定位置时的平面图,若,=60cm,求点到边的距离.(结果保留根号)
略解析:
(1)A  -----------------2分

(2)解;过点B作BC⊥OA于点C,设BC="x, " ∵∠BOA=45°, ∠BA0=30°, 
∴OC="x, " AC=x,则X+x=60
X=30-30
∴点到边的距离为(30-30)cm.-------------------6分
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

精英家教网阅读材料:
如图1,过△ABC的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC的“水平宽”(a),中间的这条直线在△ABC内部线段的长度叫△ABC的“铅垂高(h)”.我们可得出一种计算三角形面积的新方法:
S△ABC=
1
2
ah,即三角形面积等于水平宽与铅垂高乘积的一半.
解答下列问题:
如图2,抛物线顶点坐标为点C(1,4),交x轴于点A(3,0),交y轴于点B.
(1)求抛物线和直线AB的解析式;
(2)点P是抛物线(在第一象限内)上的一个动点,连接PA,PB,当P点运动到顶点C时,求△CAB的铅垂高CD及S△CAB
(3)是否存在抛物线上一点P,使S△PAB=
9
8
S△CAB?若存在,求出P点的坐标;若精英家教网不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

附加题:
(1)如图,AB、CD是⊙O的两条弦,它们相交于点P,连接AD、BD,已知AD=BD=4,PC=6,那么CD的长是
 

精英家教网
(2)阅读材料:如图,过△ABC的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC的“水平宽”(a),中间的这条直线在△ABC内部线段的长度叫△ABC的“铅垂高(h)”.我们可得出一种计算三角形面积的新方法:S△ABC=
1
2
ah
,即三角形面积等于水平宽与铅垂高乘积的一半.
精英家教网
解答下列问题:
如图,抛物线顶点坐标为点C(1,4),交x轴于点A(3,0),交y轴于点B.
①求抛物线和直线AB的解析式;
②点P是抛物线(在第一象限内)上的一个动点,连接PA,PB,当P点运动到顶点C时,求△CAB的铅垂高CD及S△CAB
③点P是抛物线(在第一象限内)上的一个动点,是否存在一点P,使S△PAB=
9
8
S△CAB,若存在,求出P点的坐标;若不存在,请说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读材料:如图(一),△ABC的周长为l,内切圆O的半径为r,连接OA、OB、OC,△ABC被划分为三个小三角形,用S△ABC表示△ABC的面积.
精英家教网
∵S△ABC=S△OAB+S△OBC+S△OCA
又∵S△OAB=
1
2
AB•r,S△OBC=
1
2
BC•r,S△OCA=
1
2
CA•r
∴S△ABC=
1
2
AB•r+
1
2
BC•r+
1
2
CA•r=
1
2
l•r(可作为三角形内切圆半径公式)
(1)理解与应用:利用公式计算边长分为5、12、13的三角形内切圆半径;
(2)类比与推理:若四边形ABCD存在内切圆(与各边都相切的圆,如图(二))且面积为S,各边长分别为a、b、c、d,试推导四边形的内切圆半径公式;
(3)拓展与延伸:若一个n边形(n为不小于3的整数)存在内切圆,且面积为S,各边长分别为a1、a2、a3、…、an,合理猜想其内切圆半径公式(不需说明理由).

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

25、阅读材料:
如图(一),在已建立直角坐标系的方格纸中,图形①的顶点为A、B、C,要将它变换到图④(变换过程中图形的顶点必须在格点上,且不能超出方格纸的边界).
例如:将图形①作如下变换(如图二).
第一步:平移,使点C(6,6)移至点(4,3),得图②;
第二步:旋转,绕着点(4,3)旋转180°,得图③;
第三步:平移,使点(4,3)移至点O(0,0),得图④.
则图形①被变换到了图④.

解决问题:
(1)在上述变化过程中A点的坐标依次为:
(4,6)→(
2
3
)→(
6
3
)→(
2
0

(2)如图(三),仿照例题格式,在直角坐标系的方格纸中将△DEF经过平移、旋转、翻折等变换得到△OPQ.(写出变换步骤,并画出相应的图形)

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读材料:
如图1,过△ABC的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC的“水平宽”(a),中间的这条直线在△ABC内部线段的长度叫△ABC的“铅垂高”(h).我们可得出一种计算三角形面积的新方法:S△ABC=ah,即三角形面积等于水平宽与铅垂高乘积的一半.

解答下列问题:
如图2,抛物线顶点坐标为点C(1,4),交x轴于点A(3,0),点P是抛物线(在第一象限内)上的一个动点.
(1)求抛物线的解析式;
(2)若点B为抛物线与y轴的交点,求直线AB的解析式;
(3)设点P是抛物线(第一象限内)上的一个动点,是否存在一点P,使S△PAB=S△CAB?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案