如图,经过原点的两条直线、分别与双曲线相交于A、B、P、Q四点,其中A、P两点在第一象限,设A点坐标为(3,1).
(1)求值及点坐标;(4分)
(2)若P点坐标为(a,3),求a值及四边形APBQ的面积;(4分)
(3)若P点坐标为(m,n),且,求P点坐标.(4分)
(1)k=3,B点坐标为(﹣3,﹣1);
(2)a=1,四边形APBQ的面积为16;
(3P点坐标为(1,3).
解析试题分析:(1)根据分别莲花山图象上点的坐标特征得到k=3×1=3,再根据正比例函数图象和反比例函数图象的性质得到点A与点B关于原点对称,则B点坐标为(﹣3,﹣1);
(2)根据反比例函数图象上点的坐标特征得到a=1,即P点坐标为(1,3),再根据正比例函数图象和反比例函数图象的性质得到点P与点Q关于原点对称,所以点Q的坐标为(﹣1,﹣3),由于OA=OB,OP=OQ,则根据平行四边形的判定得到四边形APBQ为平行四边形,然后根据两点间的距离公式计算出AB,PQ,可得到即AB=PQ,于是可判断四边形APBQ为矩形,再计算出PA和PB,然后计算矩形APBQ的面积;
(3)由于四边形APBQ为平行四边形,加上∠APB=90°,则可判断四边形APBQ为矩形,则OP=OA,根据两点间的距离公式得到m2+n2=10,且mn=3,则利用完全平方公式得到(m+n)2﹣2mn=10,可得到m+n=4,根据根与系数的关系可把m、n看作方程x2﹣4x+3=0的两根,然后解方程可得到满足条件的P点坐标.
试题解析:(1)把A(3,1)代入y=得k=3×1=3,
∵经过原点的直线l1与双曲线y=(k≠0)相交于A、B、
∴点A与点B关于原点对称,
∴B点坐标为(﹣3,﹣1);
(2)把P(a,3)代入y=得3a=3,解得a=1,
∵P点坐标为(1,3),
∵经过原点的直线l2与双曲线y=(k≠0)相交于P、Q点,
∴点P与点Q关于原点对称,
∴点Q的坐标为(﹣1,﹣3),
∵OA=OB,OP=OQ,
∴四边形APBQ为平行四边形,
∵AB2=(3+3)2+(1+1)2=40,PA2=(1+1)2+(3+3)2=40,
∴AB=PQ,
∴四边形APBQ为矩形,
∵PB2=(1+3)2+(3+1)2=32,PQ2=(3﹣1)2+(1﹣3)2=8,
∴PB=4,PQ=2,
∴四边形APBQ的面积=PA•PB=2•4=16;
(3)∵四边形APBQ为平行四边形,
而∠APB=90°,
∴四边形APBQ为矩形,
∴OP=OA,
∴m2+n2=32+12=10,
而mn=3,
∵(m+n)2﹣2mn=10,
∴(m+n)2=16,解得m+n=4或m+n=﹣4(舍去),
把m、n看作方程x2﹣4x+3=0的两根,解得m=1,n=3或m=3,n=1(舍去),
∴P点坐标为(1,3).
考点:反比例函数综合题.
科目:初中数学 来源: 题型:填空题
如图,直线AB交双曲线于A、B,交x轴于点C,B为线段AC的中点,过点B作BM⊥x轴于M,连结OA.若OM=2MC,S⊿OAC=12,则k的值为 .
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
两个反比例函数,在第一象限内的图像如图所示,点,,,…,在函数的图像上,它们的横坐标分别是,,,…,,纵坐标分别是1,3,5,…,共2013个连续奇数,过点,,,…,分别作y轴的平行线,与函数的图像交点依次是(,),(,),(,),…,(,),则 .
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,矩形OABC的顶点B的坐标为(1,2),反比例函数y=(0<m<2)的图象与AB交于点E,与BC交于点F,连接OE、OF、EF.
(1)若点E是AB的中点,则m= ,S△OEF= ;
(2)若S△OEF=2S△BEF,求点E的坐标;
(3)是否存在点E及y轴上的点M,使得△MFE与△BFE全等?若存在,写出此时点E的坐标;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,四边形ABCD是平行四边形,点A(1,0),B(3,1),C(3,3).反比例函数的函数图象经过点D,点P是一次函数y=kx+3-3k(k≠0)的图象与该反比例函数图象的一个公共点.
(1)求反比例函数的解析式;
(2)通过计算,说明一次函数y=kx+3-3k(k≠0)的图象一定过点C;
(3)对于一次函数y=kx+3-3k(k≠0),当y随x的增大而增大时,确定点P的横坐标的取值范围(不必写出过程).
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,矩形OABC的顶点A、C分别在x轴和y轴上,点的坐标为(2,3).双曲线的图像经过BC的中点D,且与AB交于点E,连接DE.
(1)求k的值及点E的坐标;
(2)若点F是边上一点,且ΔFCB∽ΔDBE,求直线FB的解析式
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
定义:已知反比例函数与,如果存在函数()则称函数为这两个函数的中和函数.
(1)试写出一对函数,使得它的中和函数为,并且其中一个函数满足:当时,随的增大而增大.
(2) 函数和的中和函数的图象和函数的图象相交于两点,试求当的函数值大于的函数值时的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:计算题
如图,一次函数的图象与反比例函数y1=-(x<0)的图象相交于正A点,与y轴、x轴分别相交于B、C两点,且C(2,0).当x<-1时,一次函数值大于反比例函数值;当x>-1时,一次函数值小于反比例函数值
【小题1】求一次函数的解析式
【小题2】设函数y2=(x>0)的图象与y1=- (x<0)的图象关于y轴对称,在y2=(x>0)的图象上取一点P(P点的横坐标大于2),过P作PQ⊥x轴,垂足是Q,若四边形BCQP的面积等于2,求P点的坐标
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com