精英家教网 > 初中数学 > 题目详情

如图,四边形ABCD是平行四边形,点A(1,0),B(3,1),C(3,3).反比例函数的函数图象经过点D,点P是一次函数y=kx+3-3k(k≠0)的图象与该反比例函数图象的一个公共点.
(1)求反比例函数的解析式;
(2)通过计算,说明一次函数y=kx+3-3k(k≠0)的图象一定过点C;
(3)对于一次函数y=kx+3-3k(k≠0),当y随x的增大而增大时,确定点P的横坐标的取值范围(不必写出过程).

(1)反比例函数的解析式为
(2)说明见解析;
(3)a的范围为

解析试题分析:(1)由B(3,1),C(3,3)得到BC⊥x轴,BC=2,根据平行四边形的性质得AD=BC=2,而A点坐标为(1,0),可得到点D的坐标为(1,2),然后把D(1,2)代入即可得到m=2,从而可确定反比例函数的解析式;
(2)把x=3代入y=kx+3-3k(k≠0)得到y=3,即可说明一次函数y=kx+3-3k(k≠0)的图象一定过点C;
(3)设点P的横坐标为a,由于一次函数y=kx+3-3k(k≠0)过C点,并且y随x的增大而增大时,则P点的纵坐标要小于3,横坐标要小于3,当纵坐标小于3时,由得到,于是得到a的取值范围.
(1)∵四边形ABCD是平行四边形,
∴AD=BC,
∵B(3,1),C(3,3),
∴BC⊥x轴,AD=BC=2,
而A点坐标为(1,0),
∴点D的坐标为(1,2).
∵反比例函数的函数图象经过点D(1,2),

∴m=2,
∴反比例函数的解析式为
(2)当x=3时,y=kx+3-3k=3k+3-3k=3,
∴一次函数y=kx+3-3k(k≠0)的图象一定过点C;
(3)设点P的横坐标为a,
则a的范围为
考点:反比例函数综合题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

如图,在平面直角坐标系中,⊙O的半径为1,∠BOA=45°,则过A点的双曲线解析式是   

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

反比例函数的图象经过点(1,2),则k=     

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,经过原点的两条直线分别与双曲线相交于A、B、P、Q四点,其中A、P两点在第一象限,设A点坐标为(3,1).
(1)求值及点坐标;(4分)
(2)若P点坐标为(a,3),求a值及四边形APBQ的面积;(4分)
(3)若P点坐标为(m,n),且,求P点坐标.(4分)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

对于平面直角坐标系xOy中的点P(a,b),若点的坐标为()(其中k为常数,且),则称点为点P的“k属派生点”.
例如:P(1,4)的“2属派生点”为(1+),即(3,6).
(1)①点P的“2属派生点” 的坐标为____________; 
②若点P的“k属派生点” 的坐标为(3,3),请写出一个符合条件的点P的坐标____________;
(2)若点P在x轴的正半轴上,点P的“k属派生点”为点,且△为等腰直角三角形,则k的值为____________;
(3)如图, 点Q的坐标为(0,),点A在函数的图象上,且点A是点B的“属派生点”,当线段B Q最短时,求B点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,点A在反比例函数的图象上.
(1) 求反比例函数的解析式;
(2)在y轴上是否存在点P,使得△AOP是直角三角形?若存在,直接写出P点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

完成y=的图象,并根据图象回答问题.
(1)根据图象指出,当y=-2时x的值;
(2)根据图象指出,当-2<x<1时,y的取值范围;
(3)根据图象指出,当-3<y<2时,x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,已知直线与反比例函数的图象相交于点A(-1,a),并且与x轴相交于点B.

(1)求a的值;
(2)求反比例函数的表达式;
(3)求△AOB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在平面直角坐标系中,反比例函数(x>0)的图象和矩形ABCD的第一象限,AD平行于x轴,且AB=2,AD=4,点A的坐标为(2,6) .

(1)直接写出B、C、D三点的坐标;
(2)若将矩形向下平移,矩形的两个顶点恰好同时落在反比例函数的图象上,猜想这是哪两个点,并求矩形的平移距离和反比例函数的解析式.

查看答案和解析>>

同步练习册答案