精英家教网 > 初中数学 > 题目详情

【题目】2019年永州市初中体育水平测试进行改革,增加了自选项目,学生可以从篮球运球、足球运球、排球向上垫球三项中必须选一项,另外从一分钟跳绳、仰卧起坐(女)或引体向上(男)、原地正面掷实心球、立定跳远中必须选一项.现对永州市某校的选考项目情况进行调查,对调查结果进行了分析统计并制作了两幅统计图:

1)补全条形统计图;

2)求抽查的这些男生的体育测试平均分;

3)若该校准备从这次体育测试成绩好的生中选出10名参加全市运动会.现在有19名学生报名,小明是这19名同学之一,小明在知道自己这次成绩后还需知道这19名学生成绩的( ),就能知道自己能不能参加市运动会.

A.平均数 B.众数 C.中位数 D.方差

【答案】(1)见解析;(2)8.3;(3)C.

【解析】

1)根据表格中数据补全条形统计图即可;

2)根据加权平均数的计算方法求解;

3)根据中位数的定义可得结果.

解:(1)补全条形统计图如下:

2)抽样男生总数

(3) 由于从19名同学中选出10名参加全市运动会,而第10位同学的成绩恰好是19名同学成绩的中位数,故知道中位数和自己的成绩就知道能不能参加市运动会,故选:C.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),抛物线与x轴的一个交点在点(3,0)和(4,0)之间.则下列结论

①a-b+c>0;②3a+b=0;

③b2=4a(c-n);

④一元二次方程ax2+bx+c=n-1有两个不相等的实数根.

其中正确结论的个数是(  )

A. 1个 B. 2个 C. 3个 D. 4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某学校为了创建书香校园,去年购买了一批图书.其中科普书的单价比文学书的单价多8元,用1800元购买的科普书的数量与用l000元购买的文学书的数量相同.

1)求去年购买的文学书和科普书的单价各是多少元;

2)这所学校今年计划再购买这两种文学书和科普书共200本,且购买文学书和科普书的总费用不超过2088元.今年文学书的单价比去年提高了20%,科普书的单价与去年相同,且每购买1本科普书就免费赠送1本文学书,求这所学校今年至少要购买多少本科普书?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,对称轴为直线x1的抛物线经过A(﹣10)、C03)两点,与x轴的另一个交点为B,点Dy轴上,且OB3OD

1)求该抛物线的表达式;

2)设该抛物线上的一个动点P的横坐标为t

①当0t3时,求四边形CDBP的面积St的函数关系式,并求出S的最大值;

②点Q在直线BC上,若以CD为边,点CDQP为顶点的四边形是平行四边形,请求出所有符合条件的点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某公司经销的一种产品每件成本为40元,要求在90天内完成销售任务.已知该产品90天内每天的销售价格与时间(第x天)的关系如下表:

时间(第x天)

1x50

50x90

x+50

90

任务完成后,统计发现销售员小王90天内日销售量p(件)与时间(第x天)满足一次函数关系p=﹣2x+200.设小王第x天销售利润为W元.

1)直接写出Wx之间的函数关系式,井注明自变量x的取值范围;

2)求小生第几天的销售量最大?最大利润是多少?

3)任务完成后,统计发现平均每个销售员每天销售利润为4800公司制定如下奖励制度:如果一个销售员某天的销售利润超过该平均值,则该销售员当天可获得200元奖金.请计算小王一共可获得多少元奖金?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:顺次连接矩形A1B1C1D1四边的中点得到四边形A2B2C2D2,再顺次连接四边形A2B2C2D2四边的中点得四边形A3B3C3D3,…,按此规律得到四边形AnBnnDn.若矩形A1B1C1D1的面积为8,那么四边形AnBnnDn的面积为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△ABC中,点D是边BC上的点(与B,C两点不重合),过点D作DE∥AC,DF∥AB,分别交AB,AC于E,F两点,下列说法正确的是(  )

A. 若AD⊥BC,则四边形AEDF是矩形

B. 若AD垂直平分BC,则四边形AEDF是矩形

C. 若BD=CD,则四边形AEDF是菱形

D. 若AD平分∠BAC,则四边形AEDF是菱形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】[问题提出]

如图①,在ABC中,若AB6AC4,求BC边上的中线AD的取值范围.

[问题解决]

解决此问题可以用如下方法,延长AD到点E使DEAD,再连结BE(或将ACD绕着点D逆时针装转180°得到EBD),把ABAC2AD集中在ABE中,利用三角形三边的关系即可判断,由此得出中线AD的取值范围是   

[应用]

如图②,如图,在ABC中,D为边BC的中点,已知AB5AC3AD2.求BC的长

[拓展]

如图③,在ABC中,∠A90°,点D是边BC的中点,点E在边AB上,过点DDFDE交边AC于点F,连结EF,已知BE4CF5,则EF的长为   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某农户承包荒山种植某产品种蜜柚已知该蜜柚的成本价为8千克,投入市场销售时,调查市场行情,发现该蜜柚销售不会亏本,且每天销量千克与销售单价千克之间的函数关系如图所示.

yx的函数关系式,并写出x的取值范围;

当该品种蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少?

查看答案和解析>>

同步练习册答案