【题目】为增强学生的身体素质,教育行政部门规定每位学生每天参加户外活动的平均时间不少于1小时. 为了解学生参加户外活动的情况,对部分学生参加户外活动的时间进行抽样调查,并将调查结果绘制作成如下两幅不完整的统计图,
请你根据图中提供的信息解答下列问题:
(1)在这次调查中共调查了多少名学生?
(2)求户外活动时间为1.5小时的人数,并补充频数分布直方图;
(3)户外活动时间的众数和中位数分别是多少?
(4)若该市共有20000名学生,大约有多少学生户外活动的平均时间符合要求?
【答案】(1)50;(2)12;(3)中数是1小时,中位数是1小时;(4)16000人.
【解析】试题分析:(1)根据户外活动时间是0.5小时的有10人,所占的百分比是20%,据此即可求得调查的总人数;
(2)用总人数乘以对应的百分比即可求得人数,从而补全直方图;
(3)根据众数、中位数的定义即可求解;
(4)利用总人数乘以对应的比分比即可求解.
试题解析:(1)调查的总人数是10÷20%=50(人);
(2)户外活动时间是1.5小时的人数是50×24%=12(人),
;
(3)中数是1小时,中位数是1小时;
(4)学生户外活动的平均时间符合要求的人数是20000×(1-20%)=16000(人).
答:大约有16000学生户外活动的平均时间符合要求.
科目:初中数学 来源: 题型:
【题目】【探索新知】
如图1,射线OC在∠AOB的内部,图中共有3个角:∠AOB、∠AOC和∠BOC,若其中有一个角的度数是另一个角度数的两倍,则称射线OC是∠AOB的“妙分线”.
【解决问题】
(1)如图2,若∠MPN= ,且射线PQ是∠MPN的“妙分线”,则∠NPQ= ____ .(用含的代数式表示出所有可能的结果)
【深入研究】
如图2,若∠MPN=54°,且射线PQ绕点P从PN位置开始,以每秒8°的速度顺时针旋转,当PQ与PN成时停止旋转,旋转的时间为t秒.
(2)当t为何值时,射线PM是∠QPN的“妙分线”.
(3)若射线PM同时绕点P以每秒6°的速度顺时针旋转,并与PQ同时停止.请求出当射线PQ 是∠MPN的“妙分线”时t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知A样本的数据如下:72,73,76,76,77,78,78,78,B样本的数据恰好是A样本数据每个都加2,则A,B两个样本的下列统计量对应相同的是( )
A.平均数
B.标准差
C.中位数
D.众数
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知在四边形ABCD中,AB=20cm,BC=15cm,CD=7cm,AD=24cm,∠ABC=90°.
(1)猜想的∠A与∠C关系;
(2)求出四边形ABCD的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,已知线段AB=20cm,CD=2cm,线段CD在线段AB上运动,E、F分别是AC、BD的中点.
(1)若AC=4cm,则EF=_________cm.
(2)当线段CD在线段AB上运动时,试判断EF的长度是否发生变化?如果不变请求出EF的长度,如果变化,请说明理由.
(3)我们发现角的很多规律和线段一样,如图②已知在内部转动,OE、OF分别平分在,则、和有何关系,请直接写出_______________________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】判断正误,并说明理由
(1)给定一组数据,那么这组数据的众数有可能不唯一;理由
(2)给定一组数据,那么这组数据的平均数一定是这组数据中的一个数;
理由
(3)n个数的中位数一定是这n个数中的某一个;理由
(4)求9个数据(x1、x2、……、x9 , 其平均数为m)的标准差S, 计算公式为: ;理由
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com