精英家教网 > 初中数学 > 题目详情

如图,有一直径是2m的圆锥铁皮,要从中剪出一个最大的圆心角是90°的扇形ABC.
(1)求被剪掉阴影部分的面积.
(2)用所留的扇形铁皮围成一个圆锥,该圆锥的底面半径是多少?

解:(1)连接BC,AO,

∵∠BAC=90°,OB=OC,
∴BC是圆0的直径,AO⊥BC,
∵圆的直径为2,
∴AO=OC=1,
则AC=m,
故S扇形==

(2)弧BC的长l==πm,
则2πR=π,
解得:R=
故该圆锥的底面圆的半径是m.
分析:(1)BC是圆O的直径,求出求得AC的值,进而利用扇形的面积公式可得阴影部分的面积;
(2)求出弧BC的长度,即圆锥底面圆的周长,继而可得出底面圆的半径.
点评:本题考查了扇形的面积计算,属于基础题,熟练掌握扇形的面积计算公式及弧长的计算公式是解答本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网有一直径为
2
m的圆形纸片,要从中剪去一个最大的圆心角是90°的扇形ABC(如图).
(1)求被剪掉的阴影部分的面积;
(2)用所留的扇形铁皮围成一个圆锥,该圆锥的底面圆的半径是多少?
(3)求圆锥的全面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网本题为选做题,从甲、乙两题中选做一题即可,如果两题都做,只以甲题计分.
选做题:甲:已知关于x的一元二次方程x2-(2m+1)x+m2+m-2=0
(1)求证:不论m取何值,方程总有两个不相等的实数根;
(2)若方程的两个实数根x1、x2满足
1
x1
+
1
x2
=1+
1
m+2
,求m的值.
乙:如图,点D是⊙O的直径CA延长线上一点,点B在⊙O上,且AB=AD=AO.
(1)求证:BD是⊙O的切线.
(2)若点E是劣弧BC上一点,AE与BC相交于点F,且△BEF的面积为8,cos∠BFA=
2
3
,求△ACF的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•沐川县二模)本题为选做题,从甲乙两题中选做一题即可,如果两题都做,只以甲题计分.
甲题:已知关于x的一元二次方程mx2-(2m-1)x+m-2=0(m>0).
(1)证明:这个方程有两个不相等的实根;
(2)如果这个方程的两根分别为x1,x2,且(x1-5)(x2-5)=5m,求m的值.
乙题:如图,在△ABC中,AB=AC,以AB为直径作⊙O,与BC交于点D,过D作AC的垂线,垂足为E.
(1)证明:BD=DC;
(2)DE是否是⊙O的切线?若是,请给出证明;若不是,请说明理由.
我选做的是

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,有一直径是2m的圆锥铁皮,要从中剪出一个最大的圆心角是90°的扇形ABC.
(1)求被剪掉阴影部分的面积.
(2)用所留的扇形铁皮围成一个圆锥,该圆锥的底面半径是多少?

查看答案和解析>>

同步练习册答案