精英家教网 > 初中数学 > 题目详情

【题目】如图,一次函数y=ax+b与二次函数y=ax2+bx+c的大致图象是(  )

A. B.

C. D.

【答案】C

【解析】

可先根据一次函数的图象判断a、b的符号,再判断二次函数图象与实际是否相符,判断正误.

A. 由一次函数y=kx+b的图象可得:a>0,b>0,此时二次函数y=ax2+bx+c的图象应该开口向上,对称轴x= <0,错误;

B. 由一次函数y=ax+b的图象可得:a>0,此时二次函数y=ax2+bx+c的图象应该开口向上,错误;

C. 由一次函数y=ax+b的图象可得:a>0,b<0,此时二次函数y=ax2+bx+c的图象应该开口向上,对称轴x=>0,正确;

D. 由一次函数y=ax+b的图象可得:a<0,b<0,此时二次函数y=ax2+bx+c的图象应该开口向下,错误.

故答案选C.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知一次函数y=kx+b的图象与反比例函数的图象交于A,B两点,且点A的横坐标和点B的纵坐标都是﹣2,

求:(1)一次函数的解析式;

(2)△AOB的面积;

(3)直接写出一次函数的函数值大于反比例函数的函数值时x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我国古代数学著作《九章算术》中有这样一个问题:今有池方一丈,葭生其中央,出水一尺.引葭赴岸,适于岸齐,问水深、葭长各几何?这道题的意思是说:有一个边长为10尺的正方形水池,在水池的正中央长着一根芦苇,芦苇露出水面1尺,若将芦苇拉到水池一边的中点处,芦苇的顶端恰好到达池边的水面,问水的深度与这根芦苇的长度分别是多少?若设水的深度为x尺,则可以得到方程_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在ABC中,点OAC上的一个动点,过点O作直线MNBC,MN交∠BCA的平分线于E,交∠BCA的外角平分线于F.

(1)请猜测OEOF的大小关系,并说明你的理由;

(2)点O运动到何处时,四边形AECF是矩形?写出推理过程;

(3)点O运动到何处且ABC满足什么条件时,四边形AECF是正方形?(写出结论即可)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知的三个顶点坐标为

绕坐标原点旋转,画出图形,并写出点的对应点的坐标________

绕坐标原点逆时针旋转,直接写出点的对应点的坐标________

请直接写出:以为顶点的平行四边形的第四个顶点的坐标________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知y是关于x的一次函数,下表列出了这个函数部分的对应值:

1)求这个一次函数的表达式.

2)求mn的值.

3)已知点和点在该一次函数图象上,设,判断正比例函数的图象是否有可能经过第一象限,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点是点A(3,0),其部分图象如图,则下列结论:

2a+b=0;

b2﹣4ac<0;

③一元二次方程ax2+bx+c=0(a≠0)的另一个解是x=﹣1;

④点(x1,y1),(x2,y2)在抛物线上,若x1<0<x2,则y1<y2

其中正确的结论是_____(把所有正确结论的序号都填在横线上)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点E∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别为C、D.

求证:(1)∠ECD=∠EDC;

(2)OC=OD;

(3)OE是线段CD的垂直平分线.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商店购进甲、乙两种商品,已知每件甲种商品的价格比每件乙种商品的价格贵5元,用360元购买甲种商品的件数恰好与用300元购买乙种商品的件数相同.

1)求甲、乙两种商品每件的价格各是多少元?

2)若商店计划购买这两种商品共40件,且投入的经费不超过1150元,那么,最多可购买多少件甲种商品?

查看答案和解析>>

同步练习册答案