【题目】如图,一次函数y=ax+b与二次函数y=ax2+bx+c的大致图象是( )
A. B.
C. D.
【答案】C
【解析】
可先根据一次函数的图象判断a、b的符号,再判断二次函数图象与实际是否相符,判断正误.
A. 由一次函数y=kx+b的图象可得:a>0,b>0,此时二次函数y=ax2+bx+c的图象应该开口向上,对称轴x= <0,错误;
B. 由一次函数y=ax+b的图象可得:a>0,此时二次函数y=ax2+bx+c的图象应该开口向上,错误;
C. 由一次函数y=ax+b的图象可得:a>0,b<0,此时二次函数y=ax2+bx+c的图象应该开口向上,对称轴x=>0,正确;
D. 由一次函数y=ax+b的图象可得:a<0,b<0,此时二次函数y=ax2+bx+c的图象应该开口向下,错误.
故答案选C.
科目:初中数学 来源: 题型:
【题目】如图,已知一次函数y=kx+b的图象与反比例函数的图象交于A,B两点,且点A的横坐标和点B的纵坐标都是﹣2,
求:(1)一次函数的解析式;
(2)△AOB的面积;
(3)直接写出一次函数的函数值大于反比例函数的函数值时x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我国古代数学著作《九章算术》中有这样一个问题:今有池方一丈,葭生其中央,出水一尺.引葭赴岸,适于岸齐,问水深、葭长各几何?”这道题的意思是说:“有一个边长为10尺的正方形水池,在水池的正中央长着一根芦苇,芦苇露出水面1尺,若将芦苇拉到水池一边的中点处,芦苇的顶端恰好到达池边的水面,问水的深度与这根芦苇的长度分别是多少?若设水的深度为x尺,则可以得到方程_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在△ABC中,点O是AC上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的平分线于E,交∠BCA的外角平分线于F.
(1)请猜测OE与OF的大小关系,并说明你的理由;
(2)点O运动到何处时,四边形AECF是矩形?写出推理过程;
(3)点O运动到何处且△ABC满足什么条件时,四边形AECF是正方形?(写出结论即可)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知的三个顶点坐标为,,.
将绕坐标原点旋转,画出图形,并写出点的对应点的坐标________;
将绕坐标原点逆时针旋转,直接写出点的对应点″的坐标________;
请直接写出:以、、为顶点的平行四边形的第四个顶点的坐标________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知y是关于x的一次函数,下表列出了这个函数部分的对应值:
(1)求这个一次函数的表达式.
(2)求m,n的值.
(3)已知点和点在该一次函数图象上,设,判断正比例函数的图象是否有可能经过第一象限,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点是点A(3,0),其部分图象如图,则下列结论:
①2a+b=0;
②b2﹣4ac<0;
③一元二次方程ax2+bx+c=0(a≠0)的另一个解是x=﹣1;
④点(x1,y1),(x2,y2)在抛物线上,若x1<0<x2,则y1<y2.
其中正确的结论是_____(把所有正确结论的序号都填在横线上)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别为C、D.
求证:(1)∠ECD=∠EDC;
(2)OC=OD;
(3)OE是线段CD的垂直平分线.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商店购进甲、乙两种商品,已知每件甲种商品的价格比每件乙种商品的价格贵5元,用360元购买甲种商品的件数恰好与用300元购买乙种商品的件数相同.
(1)求甲、乙两种商品每件的价格各是多少元?
(2)若商店计划购买这两种商品共40件,且投入的经费不超过1150元,那么,最多可购买多少件甲种商品?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com