【题目】如图,已知直线y1=x与双曲线y2=(k>0)交于A、B两点,且点A的横坐标为4.
(1)k的值为 ;当x的取值范围为 时,y1>y2;
(2)若双曲线y2=(k>0)上一点C的纵坐标为8,求△AOC的面积.
【答案】(1)8、x>4或﹣4<x<0;(2)15
【解析】
试题分析:(1)根据正比例函数先求出点A的坐标,从而求出了k值为8,然后通过解方程组求得B的坐标,根据图象即可求得y1>y2时的x的取值.;
(2)过A、C点分别作x轴、y轴的垂线垂足为G、E,两垂线交于点F,则四边形EFGO是矩形,根据C的纵坐标求得C的坐标,然后根据S△AOC=S矩形﹣SOEC﹣S△CFA﹣S△OAG计算即可.
解:(1)∵点A横坐标为4,
∴由y1=x可知当x=4时,y=2.
∴点A的坐标为(4,2).
∵点A是直线y1=x与双曲线y2=(k>0)的交点,
∴k=4×2=8.
∴双曲线的解析式为y=,
解得或,
∴A((4,2),B(﹣4,﹣2),
根据图象可知:当x>4或﹣4<x<0时,y1>y2;
故答案为8、x>4或﹣4<x<0.
(2)如图,过A、C点分别作x轴、y轴的垂线垂足为G、E,两垂线交于点F,则四边形EFGO是矩形,
∵点C在双曲线上,点C的纵坐标为8,
∴8=,解得x=1,
∴C(1,8),
∴S△AOC=S矩形﹣SOEC﹣S△CFA﹣S△OAG=8×4﹣×1×8﹣(4﹣1)×(8﹣2)﹣×4×2=32﹣4﹣9﹣4=15.
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,AC=8cm,AB=10cm.点P从点A出发,以5cm/s的速度从点A运动到终点B;同时,点Q从点C出发,以3cm/s的速度从点C运动到终点B,连结PQ;过点P作PD⊥AC交AC于点D,将△APD沿PD翻折得到△A′PD,以A′P和PB为邻边作A′PBE,A′E交射线BC于点F,交射线PQ于点G.设A′PBE与四边形PDCQ重叠部分图形的面积为Scm2,点P的运动时间为ts.
(1)当t为 时,点A′与点C重合;
(2)求S与t的函数关系式;
(3)请直接写出当射线PQ将A′PBE分成的两部分图形的面积之比是1:3时t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点D为⊙O上的一点,点C在直径BA的延长线上,并且∠CDA=∠CBD.
(1)求证:CD是⊙O的切线;
(2)过点B作O的切线,交CD的延长线于点E,若BC=12,tan∠CDA=,求BE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一袋大米的标准重量为10kg.把一袋重10.5kg的大米记为+0.5kg,则一袋重9.8kg的大米记为( )
A.﹣9.8kg
B.+9.8kg
C.﹣0.2kg
D.0.2kg
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若A(﹣3,y1),B(3,y3),C(2,y2)二次函数y=x2+4x﹣5的图象上的三点,则y1、y2、y3的大小关系是( )
A. y1<y2<y3 B. y2<y1<y3 C. y3<y1<y2 D. y1<y3<y2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列各式由左边到右边的变形中,是分解因式的为( )
A.x2﹣4x+4=x(x﹣4)+4
B.a(x+y)=ax+ay
C.x2﹣16+3x=(x﹣4)(x+4)+3x
D.10x2﹣5x=5x(2x﹣1)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,过点M(-3,2)分别作x轴、y轴的垂线与反比例函数y=的图象交于A、B两点,则四边形MAOB的面积为________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com