【题目】某商店准备购进两种商品,种商品毎件的进价比种商品每件的进价多20元,用3000元购进种商品和用1800元购进种商品的数量相同.商店将种商品每件的售价定为80元,种商品每件的售价定为45元.
(1)种商品每件的进价和种商品每件的进价各是多少元?
(2)商店计划用不超过1560元的资金购进两种商品共40件,其中种商品的数量不低于种商品数量的一半,该商店有几种进货方案?
(3)端午节期间,商店开展优惠促销活动,决定对每件种商品售价优惠()元,种商品售价不变,在(2)条件下,请设计出销售这40件商品获得总利润最大的进货方案.
【答案】(1种商品每件的进价是50元,种商品每件的进价是30元;(2)商店共有5种进货方案;(3)①当时,获利最大,即买18件商品,22件商品,②当时,,(2)问中所有进货方案获利相同,③当时,获利最大,即买14件商品,26件商品.
【解析】
(1)设A商品每件进价为x元,B商品每件的进价为(x-20)元,根据种商品毎件的进价比种商品每件的进价多20元,用3000元购进种商品和用1800元购进种商品的数量相同,列方程求解;
(2)设购买种商品件,则购买商品()件,根据商店计划用不超过1560元的资金购进两种商品共40件,其中种商品的数量不低于种商品数量的一半,列出不等式组即可
(3)先设销售两种商品共获利元,然后分析求解新的进货方案
(1)设种商品每件的进价是元,则种商品每件的进价是元,
由题意得:,
解得:,
经检验,是原方程的解,且符合题意,
,
答:种商品每件的进价是50元,种商品每件的进价是30元;
(2)设购买种商品件,则购买商品()件,
由题意得:,
解得:,
∵为正整数,
∴14、15、16、17、18,
∴商店共有5种进货方案;
(3)设销售两种商品共获利元,
由题意得:
,
①当时,,随的增大而增大,
∴当时,获利最大,即买18件商品,22件商品,
②当时,,
与的值无关,即(2)问中所有进货方案获利相同,
③当时,,随的增大而减小,
∴当时,获利最大,即买14件商品,26件商品.
科目:初中数学 来源: 题型:
【题目】如图1,已知点A(-2,0).点D在y轴上,连接AD并将它沿x轴向右平移至BC的位置,且点B坐标为(4,0),连接CD,OD=AB.
(1)线段CD的长为 ,点C的坐标为 ;
(2)如图2,若点M从点B出发,以1个单位长度/秒的速度沿着x轴向左运动,同时点N从原点O出发,以相同的速度沿折线OD→DC运动(当N到达点C时,两点均停止运动).假设运动时间为t秒.
①t为何值时,MN∥y轴;
②求t为何值时,S△BCM=2S△ADN.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的边长为2,其面积标记为S1,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2,…按照此规律继续下去,则S2016的值为( )
A. ()2013B. ()2014C. ()2013D. ()2014
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)解不等式2(4x-1)≥5x-8,并把它的解集在数轴上表示出来.
(2)如图,在平面直角坐标系xOy中,△ABC的三个顶点的坐标分别是A(-3,0),B(-6,-2)C(-2,-5).将△ABC向上平移3个单位长度,再向右平移5个单位长度,得到△A1B1C1.
①在平面直角坐标系xOy中画出△A1B1C1.
②求△A1B1C1的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知反比例函数y1=的图象与一次函数y2=ax+b的图象交于点A(1,4)和点B(m,-2) .
(1)求这两个函数的关系式;
(2)观察图象,直接写出使得y1>y2成立的自变量x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠1=∠2,G为AD的中点,BG的延长线交AC于点E,F为AB上的一点,CF与AD垂直,交AD于点H,则下面判断正确的有( )
①AD是△ABE的角平分线;②BE是△ABD的边AD上的中线;
③CH是△ACD的边AD上的高;④AH是△ACF的角平分线和高
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,分别以Rt△ABC的直角边AC,斜边AB为边向外作等边三角形△ACD和△ABE,F为AB的中点,连接DF,EF,∠ACB=90°,∠ABC=30°.则以下4个结论:①AC⊥DF;②四边形BCDF为平行四边形;③DA+DF=BE;④其中,正确的 是( )
A.只有①②B.只有①②③C.只有③④D.①②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线与轴相交于O、A两点(其中O为坐标原点),过点P(2,2a)作直线PM⊥x轴于点M,交抛物线于点B,点B关于抛物线对称轴的对称点为C(其中B、C不重合),连接AP交y轴于点N,连接BC和PC.
(1)时,求抛物线的解析式和BC的长;
(2)如图时,若AP⊥PC,求的值;
(3)是否存在实数,使,若存在,求出的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】七年级教师对试卷讲评课中学生参与的深度与广度进行评价调查,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项:评价组随机抽取了若干名初中学生的参与情况,绘制成如图所示的频数分布直方图和扇形统计图(均不完整),请根据图中所给信息解答下列问题:
(1)在这次评价中,一共抽查了________名学生;
(2)在扇形统计图中,项目“主动质疑”所在的扇形的圆心角的度数为________度;
(3)请将频数分布直方图补充完整;
(4)如果全市有8600名七年级学生,那么在试卷评讲课中,“独立思考”的七年级学生约有多少人?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com