精英家教网 > 初中数学 > 题目详情

正方形ABCD的中心为O,面积为1989cm2.P为正方形内一点,且∠OPB=45°,PA:PB=5:14.则PB=________.

42cm
分析:首先证出O,P,A,B四点共圆,由此推出∠APB=90°,设PA=5x,PB=14x,根据勾股定理即可求出x,进一步得到PB的长度.
解答:解:连接OA,OB,
∵正方形ABCD的中心为O,∠OPB=45°,
∴∠OAB=∠OPB=45°,∠OBA=45°,
∴O,P,A,B四点共圆,
∴∠APB=∠AOB=180°-45°-45°=90°,
在△OAB中由勾股定理得:PA2+PB2=AB2=1989,
由于PA:PB=5:14,
设PA=5x,PB=14x,
(5x)2+(14x)2=1989,
解得:x=3,
∴PB=14x=42.
故答案为:42cm.
点评:本题主要考查了四点共圆,勾股定理,正方形的性质,三角形的内角和定理等知识点,综合运用性质把已知条件和未知条件归结到一个三角形中是解此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,点O为正方形ABCD的中心,BE平分∠DBC交DC于点E,延长BC到点F,使FC=EC,连接DF交BE的延长线于点H,连接OH交DC于点G,连接HC.则以下四个结论中正确结论的个数为(  )
①OH=
1
2
BF;②∠CHF=45°;③GH=
1
4
BC;④DH2=HE•HB.
A、1个B、2个C、3个D、4个

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知正方形ABCD与正方形OEFG的边长均为a,点O是正方形ABCD的中心,则图中阴影部分面积是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•武汉模拟)已知点O为正方形ABCD的中心,M为射线OD上一动点(M与点O,D不重合),以线段AM为一边作正方形AMEF,连接FD.
(1)当点M在线段OD上时(如图1),线段BM与DF有怎样的数量及位置关系?请判断并直接写出结果;
(2)当点M在线段OD的延长线上时(如图2),(1)中的结论是否仍然成立?请结合图2说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,正方形ABCD的边长为4,点E是AB边上的一点,将△BCE沿着CE折叠至△FCE,若CF、CE恰好与正方形ABCD的中心为圆心的⊙O相切,则折痕CE的长为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知正方形ABCD的边长为2,点P是BC上的一点,将△DCP沿DP折叠至△DPQ,若DQ,DP恰好与如图所示的以正方形ABCD的中心O为圆心的⊙O相切,则折痕DP的长为(  )

查看答案和解析>>

同步练习册答案