精英家教网 > 初中数学 > 题目详情
(1997•重庆)如图,以⊙O上一点O1为圆心作圆和⊙O相交于A,B两点,过A作直线CD交⊙O于C,交⊙O1于D.CB交⊙O1于E,AB与CO交于F.
求证:(1)AC•BC=CF2+AF•BF;
      (2)∠CDB=∠CBD.
分析:(1)连接O1A,O1B,由圆的半径相等得到O1A=O1B,再利用等弦所对的劣弧相等得到两条弧相等,利用等弧所对的圆周角相等得到一对角相等,再利用同弧所对的圆周角相等得到另一对角相等,利用两对对应角相等的两三角形相似得到三角形AFC与三角形O1BC相似,由相似得比例,等量代换即可得证;
(2)连接O1D,则O1D=O1B=O1A,利用等边对等角得到两对角相等,再由圆内接四边形的外角等于它的内对角得到一对角相等,等量代换即可得证.
解答:证明:(1)连接O1A,O1B,则O1A=O1B,
O1A
=
O1B

∴∠ACF=∠BCF,
∵∠CAB=∠CO1B,
∴△AFC∽△O1BC,
AC
O1C
=
CF
BC

∴AC•BC=O1C•CF=(O1F+CF)•CF=CF2+O1F•CF,
∵AF•BF=O1F•CF,
∴AC•BC=CF2+AF•BF;

(2)连接O1D,则O1D=O1B=O1A,
∴∠O1DB=∠O1BD,∠O1DA=∠O1AD,
∵∠O1AD=∠CBO1
∴∠O1DA=∠CBO1
∴∠O1DA+∠O1DB=∠O1BD+∠CBO1,即∠CDB=∠CBD.
点评:此题考查了相交两圆的性质,相似三角形的判定与性质,圆内接四边形的性质,以及圆周角定理,熟练掌握相交两圆的性质是解本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(1997•重庆)如图.△ABC中,AB=AC,∠A=40°,∠ABC的平分线交AC于D,则∠BDC=
75
75
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1997•重庆)如图,PD切⊙O于A,
AB
=2
BC
,∠CAP=120°,则∠DAB=
40
40
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1997•重庆)如图.两个同心圆,小圆的切线被大圆截得的部分为AB,两圆所围成的圆环面积是9π,则AB=
6
6

查看答案和解析>>

科目:初中数学 来源: 题型:

(1997•重庆)如图,Rt△ABC中,∠BAC=90°,过顶点A的直线DE∥BC,∠ABC,∠ACB的平分线分别交DE于E、D,若AC=6,BC=10,则DE=(  )

查看答案和解析>>

同步练习册答案