精英家教网 > 初中数学 > 题目详情
(1997•重庆)如图.△ABC中,AB=AC,∠A=40°,∠ABC的平分线交AC于D,则∠BDC=
75
75
度.
分析:由AB=AC,根据等腰三角形的性质得到∠ABC=∠C,再根据三角形内角和定理得到∠ABC=∠C=(180°-40°)÷2=70°,然后利用角平分线的定义求出∠DBC,最后根据三角形内角和定理可求出∠BDC.
解答:解:∵AB=AC,
∴∠ABC=∠C,
∵∠A=40°,
∴∠ABC=∠C=(180°-40°)÷2=70°,
而BD为∠ABC的平分线,
∴∠DBC=
1
2
×70°=35°,
∴∠BDC=180°-70°-35°=75°.
故答案为75.
点评:本题考查了等腰三角形的性质:等腰三角形的两底角相等.也考查了三角形的内角和定理.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(1997•重庆)如图,PD切⊙O于A,
AB
=2
BC
,∠CAP=120°,则∠DAB=
40
40
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1997•重庆)如图.两个同心圆,小圆的切线被大圆截得的部分为AB,两圆所围成的圆环面积是9π,则AB=
6
6

查看答案和解析>>

科目:初中数学 来源: 题型:

(1997•重庆)如图,Rt△ABC中,∠BAC=90°,过顶点A的直线DE∥BC,∠ABC,∠ACB的平分线分别交DE于E、D,若AC=6,BC=10,则DE=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(1997•重庆)如图,以⊙O上一点O1为圆心作圆和⊙O相交于A,B两点,过A作直线CD交⊙O于C,交⊙O1于D.CB交⊙O1于E,AB与CO交于F.
求证:(1)AC•BC=CF2+AF•BF;
      (2)∠CDB=∠CBD.

查看答案和解析>>

同步练习册答案