【题目】若关于x的一元二次方程(p-1)x2-x+p2-1=0的一个根为0,则p的值为_________.
科目:初中数学 来源: 题型:
【题目】已知某种礼炮的升空高度h(m)与飞行时间t(s)的关系式是h=﹣(t﹣4)2+20.若此礼炮在升空到最高处时引爆,则引爆需要的时间为( )
A.3sB.4sC.5sD.6s
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】大家知道
,它在数轴上的意义是表示
的点与原点(即表示
的点)之间的距离,又如式子
,它在数轴上的意义是表示
的点与表示
的点之间的距离.
(
)在数轴上的意义是表示
的点与表示
的点之间的距离是__________.
(
)反过来,式子
在数轴上的意义是__________.
(
)试用数轴探究:当
时,
的值为__________.
(
)进一步探究:
的最小值为__________.
(
)最后发现:当
的值最小时,
的值为__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若存在3个互不相同的有理数a,b,c,使得|1﹣a|+|1﹣3a|+|1﹣4a|=|1﹣b|+|1﹣3b|+|1﹣4b|=|1﹣c|+|1﹣3c|+|1﹣4c|=t,则t=
A.
B.
C. 1 D. 2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下面材料:
小丁在研究数学问题时遇到一个定义:对于排好顺序的三个数:
,称为数列
.计算
,
,
将这三个数的最小值称为数列
的价值.例如,对于数列2,﹣1,3,因为
,
,
,所以数列2,﹣1,3的价值为
.
小丁进一步发现:当改变这三个数的顺序时,所得到的数列都可以按照上述方法计算其相应的价值.如数列﹣1,2,3的价值为
;数列3,﹣1,2的价值为1;….经过研究,小丁发现,对于“2,﹣1,3”这三个数,按照不同的排列顺序得到的不同数列中,价值的最小值为
.根据以上材料,回答下列问题:
(1)数列﹣4,﹣3,2的价值为 ;
(2)将“﹣4,﹣3,2”这三个数按照不同的顺序排列,可得到若干个数列,这些数列的价值的最小值为 ,取得价值最小值的数列为 (写出一个即可);
(3)将2,﹣9,a(a>1)这三个数按照不同的顺序排列,可得到若干个数列.若这些数列的价值的最小值为1,则a的值为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(8分)完成下面的解题过程:
如图,AD∥BC,点F是AD上一点,CF与BA的延长线相交于点E,且∠1=∠2,∠3=∠4.CD与BE平行吗?为什么?
解:CD∥BE,理由如下:
![]()
∵AD∥BC(已知),∴∠4= ① ( ② )
∵∠3=∠4(已知),∴∠3= ③ ( ④ )
∵∠1=∠2(已知),
∴∠1+∠ACE=∠2+∠ACE ( ⑤ )
即∠BCE= ⑥
∴∠3= ⑦
∴CD∥BE( ⑧ )
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场试销一种成本为每件120元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量
(件)是销售单价
(元)的函数,并且满足如下对应值表:
销售单价 | 130 | 140 | 145 |
销售量 | 110 | 100 | 95 |
(1)求
与
的函数表达式;
(2)若该商场获得利润为
元,试写出利润
与销售单价
之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?
(3)若该商场获得利润不低于 2000元,试确定销售单价
的范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com