精英家教网 > 初中数学 > 题目详情

【题目】如图,已知AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,且BC=CD.

(1)求证:△ACE≌△ACF;

(2)若AB=21,AD=9,AC=17,求CF的长.

【答案】(1)证明见解析(2)8

【解析】

(1)由角平分线的定义及所给条件利用AAS可证明△ACE≌△ACF;
(2)结合(1)中的全等可证明Rt△CDF≌Rt△CEB,可得DF=BE,再由AE-AF,可证得DF=BE,利用线段和差可求得BE、AE,在Rt△BCE中可求得CE,则可求得CF.

(1)证明:∵AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,

∴∠BAC=∠CAD, ∠AFC=∠AEC=90°

在△ACE和△ACF 中,

∵∠BAC=∠CAD, ∠AFC=∠AEC,AC=AC,

∴△ACE≌△ACF (AAS).

(2)由(1)知:∠AFC=∠AEC=90°,△ACE≌△ACF,

∴∠AFC=∠BEC=90°,CE=CF,AF=AE,

又∵CD=CB,

∴Rt△CDF≌Rt△CEB(HL),

∴DF=EB,

∴AD+DF=AF=AE=AB-EB,

∵AB=21,AD=9,

∴9+DF=21-EB,

∴EB=DF=6, AE=15,

在Rt△ACE中,

∴CF=CE=8.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知函数y1=ax2+bx,y2=ax+b(ab≠0).在同一平面直角坐标系中.
(1)若函数y1的图象过点(﹣1,0),函数y2的图象过点(1,2),求a,b的值.
(2)若函数y2的图象经过y1的顶点.
①求证:2a+b=0;
②当1<x< 时,比较y1 , y2的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一艘海轮在A点时测得灯塔C在它的北偏东42°方向上,它沿正东方向航行80海里后到达B处,此时灯塔C在它的北偏西55°方向上.

(1)求海轮在航行过程中与灯塔C的最短距离(结果精确到0.1);
(2)求海轮在B处时与灯塔C的距离(结果保留整数).
(参考数据:sin55°≈0.819,cos55°≈0.574,tan55°≈1.428,tan42°≈0.900,tan35°≈0.700,tan48°≈1.111)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交ACAB边于EF若点DBC边的中点,点M为线段EF上一动点,则周长的最小值为  

A. 6 B. 8 C. 10 D. 12

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABCD中,SABCD=24,AE平分∠BAC,交BC于E,沿AE将△ABE折叠,点B的对应点为F,连接EF并延长交AD于G,EG将ABCD分为面积相等的两部分.则SABE=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠B=90°,AB=BC=10 cm,点PA出发沿射线AB1cm/s的速度作直线运动,点QC出发沿边BC的延长线以2cm/s的速度作直线运动,如果P,Q分别从A,B同时出发,经过_____秒,△PCQ的面积为24 cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明购买了一部新手机,到某通讯公司咨询移动电话资费情况,准备办理入网手续,该通讯公司工作人员向他介绍两种不同的资费方案:

方案代号

月租费(元)

免费时间(分)

超过免费时间的通话费(元/分)

10

0

0.20

30

80

0.15


(1)分别写出方案一、二中,月话费(月租费与通话费的总和)y(单位:元)与通话时间x(单位:分)的函数关系式;
(2)画出(1)中两个函数的图象;
(3)若小明月通话时间为200分钟左右,他应该选择哪种资费方案最省钱.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列说法:①如果两个三角形全等,那么这两个三角形一定成轴对称;②数轴上的点和实数一一对应;③3的一个平方根;④两个无理数的和一定为无理数;⑤6.9103精确到十分位;⑥ 的平方根是4.其中正确的__________ .(填序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图,分析下列四个结论: ①abc<0;②b2﹣4ac>0;③3a+c>0;④(a+c)2<b2
其中正确的结论有(

A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

同步练习册答案