精英家教网 > 初中数学 > 题目详情
5.由分数的性质有$\frac{1}{\sqrt{2}-1}$=$\frac{\sqrt{2}+1}{(\sqrt{2}-1)(\sqrt{2}+1)}$=$\sqrt{2}$+1,根据这一性质化简:$\frac{1}{\sqrt{3}+1}$+$\frac{1}{\sqrt{5}+\sqrt{3}}$+$\frac{1}{\sqrt{7}+\sqrt{5}}$+…+$\frac{1}{\sqrt{2n+1}+\sqrt{2n-1}}$.

分析 根据平方差公式,可分母有理化,根据实数的运算,可得答案.

解答 解:原式=$\frac{1}{2}$($\sqrt{3}$-1+$\sqrt{5}$-$\sqrt{3}$+$\sqrt{7}$-$\sqrt{5}$+…+$\sqrt{2n+1}$-$\sqrt{2n-1}$)
=$\frac{1}{2}$($\sqrt{2n+1}$-1)
=$\frac{\sqrt{2n+1}-1}{2}$.

点评 本题考查了分母有理化,利用平方差公式是分母有理化的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

15.估计$\sqrt{19}$的值在(  )
A.1和2之间B.2和3之间C.3和4之间D.4和5之间

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.点A(sin30°,-tan30°)关于原点对称的点A1的坐标是(-$\frac{1}{2}$,$\frac{\sqrt{3}}{3}$).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.如图,点D是△ABC的边BC上的一点,则在△ABC中∠C所对的边是AB;在△ACD中∠C所对的边是AD;在△ABD中边AD所对的角是∠B;在△ACD中边AD所对的角是∠C.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,CD⊥AD,BE⊥AC,AF⊥CF,CD=2cm,BE=1.5cm,AF=4cm,分别求点A、B、C到直线BC、AC、AB的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.已知实数x、y满足代数式$\sqrt{3x+2y-42}$+$\sqrt{2x-3y-15}$=0,二次根式$\sqrt{28n}$为整数且n取最小整数值.
(1)求$\sqrt{xy}$的平方根;
(2)求$\frac{\sqrt{x-y}}{\sqrt{28n}+n}$的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,∠1和∠2,∠3和∠4分别是哪两条直线被哪一条直线所截形成的?它们各是什么角(“同位角”“内错角”或“同旁内角”)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.(8mn22×(-$\frac{1}{2}$m3n33的结果是-8m11n13

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.小明是个爱动脑筋的学生,在学习了解直角三角形以后,一天他去测量学校的旗杆DF的高度,此时过旗杆的顶点F的阳光刚好过身高DE为1.6米的小明的头顶且在他身后形成的影长DC=2米.
(1)若旗杆的高度FG是a米,用含a的代数式表示DG.
(2)小明从点C后退6米在A的测得旗杆顶点F的仰角为30°,求旗杆FG的高度.(点A、C、D、G在一条直线上,$\sqrt{3}≈1.73,\sqrt{2}≈1.41$,结果精确到0.1)

查看答案和解析>>

同步练习册答案