精英家教网 > 初中数学 > 题目详情
5.计算:${(-\sqrt{3})^2}+{(\frac{1}{3})^{-2}}+\sqrt{27}-\frac{{2+\sqrt{3}}}{{2-\sqrt{3}}}$.

分析 原式利用平方根定义,负整数指数幂法则,二次根式性质计算即可得到结果.

解答 解:原式=3+9+3$\sqrt{3}$-7-4$\sqrt{3}$=3-$\sqrt{3}$.

点评 此题考查了实数的运算,熟练掌握运算法则是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

15.-4是a的一个平方根,则a的算术平方根是4.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.已知在直角坐标系中,抛物线y=ax2-8ax+3(a<0)与y轴交于点A,顶点为D,其对称轴交x轴于点B,点P在抛物线上,且位于抛物线对称轴的右侧.
(1)当AB=BD时(如图),求抛物线的表达式;
(2)在第(1)小题的条件下,当DP∥AB时,求点P的坐标;
(3)点G在对称轴BD上,且∠AGB=$\frac{1}{2}$∠ABD,求△ABG的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.计算.
(1)-$\root{3}{\frac{8}{729}}-\frac{1}{2}\root{3}{-64}+\sqrt{1\frac{7}{9}+1}$;
(2)|1-$\sqrt{2}$|+|$\sqrt{2}$-$\sqrt{3}$|+|$\sqrt{3}$-2|.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.在Rt△ABC中,∠ACB=90°,D、E分别为边AB、BC的中点,点F在边AC的延长线上,∠FEC=∠B,求证:四边形CDEF是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.下列二次根式与$\sqrt{2}$是同类二次根式的是(  )
A.$\sqrt{8}$B.$\sqrt{45}$C.$\sqrt{\frac{1}{3}}$D.$\sqrt{6}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,四边形ABCD中,AB=AD,CB=CD,则称该四边形为“筝形”.连接对角线AC、BD,交于点O.
(1)写出关于筝形对角线的一个性质BD⊥AC,且AC平分BD,并说明理由;
(2)给出下列四个条件:①OA=OC,②AC⊥BD,③∠ABD=∠CBD,④AB∥CD.从中选择一个条件①(填序号),使该筝形为菱形,并证明之.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.在?ABCD中,∠A:∠B=3:2,则∠D=72度.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.阅读下面材料:
小伟遇到这样一个问题:如图1,在△ABC(其中∠BAC是一个可以变化的角)中,AB=2,AC=4,以BC为边在BC的下方作等边△PBC,求AP的最大值.

小伟是这样思考的:利用变换和等边三角形将边的位置重新组合.他的方法是以点B为旋转中心将△ABP逆时针旋转60°得到△A′BC,连接A′A,当点A落在A′C上时,此题可解(如图2).
(1)请你回答:AP的最大值是6.
(2)参考小伟同学思考问题的方法,解决下列问题:
如图3,等腰Rt△ABC.边AB=4,P为△ABC内部一点,请写出求AP+BP+CP的最小值长的解题思路.
提示:要解决AP+BP+CP的最小值问题,可仿照题目给出的做法.把△ABP绕B点逆时针旋转60,得到△A′BP′.
①请画出旋转后的图形
②请写出求AP+BP+CP的最小值的解题思路(结果可以不化简).

查看答案和解析>>

同步练习册答案