【题目】一次函数y=kx+b的图象是直线l,点A(,)在反比例函数y=的图象上.
(1)求m的值;
(2)如图,若直线l与反比例函数的图象相交于M、N两点,不等式kx+b>的解集为1<x<2,求一次函数的表达式;
(3)当b=4时,一次函数与反比例函数的图象有两个交点,求k的取值范围.
【答案】(1)m=2;(2)y=﹣x+3;(3)k>﹣2且k≠0.
【解析】
(1)把点A(,)代入y=,即可求得m的值;
(2)根据题意得出M、N的横坐标,代入反比例函数的解析式为y=,求得坐标,然后根据待定系数法即可求得;
(3)联立方程,得到关于x的方程,由题意可得42-4k×(-2)>0,解不等式即可.
(1)∵点A(,)在反比例函数y=的图象上,
∴,
解得m=2;
(2)由题意可知M点的横坐标为1,N点的横坐标为2,
∵m=2,
∴反比例函数的解析式为y=,
∵直线l与反比例函数的图象相交于M、N两点,
∴M(1,2),N(2,1),
把M、N的坐标代入y=kx+b得,
解得,
∴一次函数的表达式为y=﹣x+3;
(3)∵一次函数y=kx+4与反比例函数y=的图象有两个交点,
∴kx+4=,
整理得,kx2+4x﹣2=0,则42﹣4k×(﹣2)>0,
解得,k>﹣2,
故当b=4时,一次函数与反比例函数的图象有两个交点,k的取值范围是k>﹣2且k≠0.
科目:初中数学 来源: 题型:
【题目】在研究相似问题时,甲、乙同学的观点如下:
甲:将边长为3、4、5的三角形按图1的方式向外扩张,得到新三角形,它们的对应边间距为1,则新三角形与原三角形相似.
乙:将邻边为3和5的矩形按图2的方式向外扩张,得到新的矩形,它们的对应边间距均为1,则新矩形与原矩形不相似.
对于两人的观点,下列说法正确的是( )
A. 两人都对 B. 两人都不对 C. 甲对,乙不对 D. 甲不对,乙对
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下面的解题过程,解答后面的问题:
如图,在平面直角坐标系中, , ,为线段的中点,求点的坐标;
解:分别过,做轴的平行线,过,做轴的平行线,两组平行线的交点如图所示,设,则,,
由图可知:
线段的中点的坐标为
(应用新知)
利用你阅读获得的新知解答下面的问题:
(1)已知,,则线段的中点坐标为
(2)平行四边形中,点,,的坐标分别为,,,利用中点坐标公式求点的坐标。
(3)如图,点在函数的图象上, ,在轴上,在函数的图象上 ,以,,,四个点为顶点,且以为一边构成平行四边形,直接写出所有满足条件的点坐标。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们知道,把直线y=x向左平移1个单位可得到一次函数y=x+1的图象,把直线y=kx(k≠0)向左平移1个单位可得到一次函数y=k(x+1)的图象,把抛物线y=ax2(a≠0)向左平移1个单位,可得到二次函数y=a(x+1)2的图象.类似的:我们将函数y=∣x∣向左平移1个单位,在平面直角坐标系中画出了新函数的部分图象,并请回答下列问题:
(1)平移后的函数解析式是__________;
(2)借助下列表格,用你认为最简单的方法补画平移后的函数图象:
(3)当x 时,y随x的增大而增大;当x 时,y随x的增大而减小.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB、CD为两个建筑物,建筑物AB的高度为60米,从建筑物AB的顶点A点测得建筑物CD的顶点C点的俯角∠EAC为30°,测得建筑物CD的底部D点的俯角∠EAD为45°.
(1)求两建筑物底部之间水平距离BD的长度;
(2)求建筑物CD的高度(结果保留根号).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系 xOy 中,已知正比例函数 y1=﹣2x 的图象与反比例函数 y2=的图象交于 A(﹣1,a),B 两点.
(1)求出反比例函数的解析式及点 B 的坐标;
(2)观察图象,请直接写出满足 y≤2 的取值范围;
(3)点 P 是第四象限内反比例函数的图象上一点,若△POB 的面积为 1,请直接写出点 P的横坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有四部不同的电影,分别记为A、B、C、D.
(1)若甲从中随机选择一部观看,则恰好是电影A的概率是 ;
(2)若甲从中随机选择一部观看,乙也从中随机选择一部观看,用列表或画树状图的方法列出所有等可能的结果,并求甲、乙两人恰好选择同一部电影的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知点A、B分别在反比例函数(x>0),(x>0)的图象上,且∠AOB=90°,则∠B=30°,则k的取值为( )
A. B. C. ﹣2 D. ﹣3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,Rt△ABC中,∠ACB=90°,CD平分∠ACB交AB于点D,按下列步骤作图:
步骤1:分别以点C和点D为圆心,大于的长为半径作弧,两弧相交于M,N两点;
步骤2:作直线MN,分别交AC,BC于点E,F;
步骤3:连接DE,DF.
若AC=4,BC=2,则线段DE的长为
A. B. C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com