精英家教网 > 初中数学 > 题目详情

【题目】如图,一次函数yax+b与反比例函数y的图象交于AB两点,点A坐标为(m2),点B坐标为(﹣4n),OAx轴正半轴夹角的正切值为,直线ABy轴于点C,过Cy轴的垂线,交反比例函数图象于点D,连接ODBD

1)求一次函数与反比例函数的解析式;

2)求四边形OCBD的面积.

【答案】1y=x-1;反比例函数的解析式为 y=,(218

【解析】

试题(1)根据∠AOE的正切值求出点A的坐标,根据点A坐标求出反比例函数解析式,从而得出点B的坐标,然后根据点A、点B的坐标得出一次函数解析式;(2)首先求出点C和点D的坐标,然后将四边形的面积转化成△ODC△BDC的面积和进行求解.

试题解析:(1tan∠AOE=OE=6A62),y=的图象过A62),k=12

反比例函数的解析式为 y=∵B﹣4n)在 y=的图象上, ∴ n=﹣3B﹣4﹣3),

一次函数y=ax+bAB点,则解得:

一次函数解析式为y=x1

x=0时,y=﹣1C0﹣1), 当y=﹣1时,x=﹣12D﹣12﹣1),

=+=12×1÷2+12×2÷2=6+12=18

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】宜居襄阳是我们的共同愿景,空气质量备受人们关注.我市某空气质量监测站点检测了该区域每天的空气质量情况,统计了20131月份至4月份若干天的空气质量情况,并绘制了如下两幅不完整的统计图.

请根据图中信息,解答下列问题:

1)统计图共统计了   天的空气质量情况;

2)请将条形统计图补充完整;空气质量为所在扇形的圆心角度数是   

3)从小源所在环保兴趣小组4名同学(2名男同学,2名女同学)中,随机选取两名同学去该空气质量监测站点参观,则恰好选到一名男同学和一名女同学的概率是   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,,连结AC,过点C作直线lAB,点P是直线l上的一个动点,直线PA与⊙O交于另一点D,连结CD,设直线PB与直线AC交于点E.

(1)求∠BAC的度数;

(2)当点DAB上方,且CDBP时,求证:PC=AC;

(3)在点P的运动过程中

①当点A在线段PB的中垂线上或点B在线段PA的中垂线上时,求出所有满足条件的∠ACD的度数;

②设⊙O的半径为6,点E到直线l的距离为3,连结BD,DE,直接写出BDE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】中华文明,源远流长:中华汉字,寓意深广,为了传承优秀传统文化,某校团委组织了一次全校3000名学生参加的汉字听写大赛,赛后发现所有参赛学生的成绩均不低于50分.为了更好地了解本次大赛的成绩分布情况,随机抽取了其中200名学生的成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列不完整的统计图表:

成绩x/

频数

频率

50≤x60

10

0.05

60≤x70

20

0.10

70≤x80

30

b

80≤x90

a

0.30

90≤x≤100

80

0.40

请根据所给信息,解答下列问题:

1a=______b=______

2)请补全频数分布直方图;

3)这次比赛成绩的中位数会落在_____________分数段;

4)若成绩在90分以上(包括90分)的为等,则该校参加这次比赛的3000名学生中成绩等约有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场一种商品的进价为每件30元,售价为每件40元.每天可以销售48件,为尽快减少库存,商场决定降价促销.

(1)若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;

(2)经调查,若每降价0.5元,每天可多销售4件,那么每天要想获得510元的利润,每件应降价多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某学校为了增强学生体质,决定开设以下体育课外活动项目:A篮球 B乒乓球C羽毛球 D足球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:

(1)这次被调查的学生共有   人;

(2)请你将条形统计图(2)补充完整;

(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】江南农场收割小麦,已知1台大型收割机和3台小型收割机1小时可以收割小麦1.4公顷,2台大型收割机和5台小型收割机1小时可以收割小麦2.5公顷.

(1)每台大型收割机和每台小型收割机1小时收割小麦各多少公顷?

(2)大型收割机每小时费用为300元,小型收割机每小时费用为200元,两种型号的收割机一共有10台,要求2小时完成8公顷小麦的收割任务,且总费用不超过5400元,有几种方案?请指出费用最低的一种方案,并求出相应的费用.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,O为菱形ABCD对角线上一点,以点O为圆心,OA长为半径的⊙OBC相切于点M

1)求证:CD与⊙O相切;

2)若菱形ABCD的边长为2,∠ABC60°,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲和乙两位同学想测量一下广场中央的照明灯P的高度,如图,当甲站在A处时,乙测得甲的影子长AD正好与他的身高AM相等,接着甲沿AC方向继续向前走,走到点B处时,甲的影子刚好是线段AB,此时测得AB的长为1.2m.已知甲直立时的身高为1.8m,求照明灯的高CP的长.

查看答案和解析>>

同步练习册答案