精英家教网 > 初中数学 > 题目详情

【题目】中华文明,源远流长:中华汉字,寓意深广,为了传承优秀传统文化,某校团委组织了一次全校3000名学生参加的汉字听写大赛,赛后发现所有参赛学生的成绩均不低于50分.为了更好地了解本次大赛的成绩分布情况,随机抽取了其中200名学生的成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列不完整的统计图表:

成绩x/

频数

频率

50≤x60

10

0.05

60≤x70

20

0.10

70≤x80

30

b

80≤x90

a

0.30

90≤x≤100

80

0.40

请根据所给信息,解答下列问题:

1a=______b=______

2)请补全频数分布直方图;

3)这次比赛成绩的中位数会落在_____________分数段;

4)若成绩在90分以上(包括90分)的为等,则该校参加这次比赛的3000名学生中成绩等约有多少人?

【答案】1600.15;(2)见解析;(380≤x90;(41200

【解析】

试题(1)样本容量是:10÷0.05=200a=200×0.30=60b=30÷200=0.15

2)补全频数分布直方图,如下:

3)一共有200个数据,按照从小到大的顺序排列后,第100个与第101个数据都落在第四个分数段,

所以这次比赛成绩的中位数会落在80≤x90分数段;

43000×0.40=1200(人).即该校参加这次比赛的3000名学生中成绩等的大约有1200人.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知:如图1,等边ABC内接于⊙O,点P是⌒AB上的任意一点,连结PAPBPC.点DPC上一点,连结DB

(1) PD=PB,求∠PBD的度数;

(2)(1)的条件下,小丽探究的值,她认为只要弄清PA+PBPC的关系即可,她的思路可以用以下框图表示:

根据小丽的思路,请你完整地书写本题的探究过程,并求出的值.

(3)如图2,把条件等边ABC”改为正方形ABCD”,其余条件不变,判断是定值吗?若是,请求出这个值;若不是,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:已知正方形的边长为a,将此正方形按照下面的方法进行剪拼:第一次,先沿正方形的对边中点连线剪开,然后对接为一个长方形,则此长方形的周长为___;第二次,再沿长方形的对边(长方形的宽)中点连线剪开,对接为新的长方形,如此继续下去,第n次得到的长方形的周长为__

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知菱形ABCD的边长为1.∠ADC60°,等边△AEF两边分别交边DCCB于点EF

1)特殊发现:如图1,若点EF分别是边DCCB的中点.求证:菱形ABCD对角线ACBD交点O即为等边△AEF的外心;

2)若点EF始终分别在边DCCB上移动.记等边△AEF的外心为点P

猜想验证:如图2.猜想△AEF的外心P落在哪一直线上,并加以证明;

拓展运用:如图3,当△AEF面积最小时,过点P任作一直线分别交边DA于点M,交边DC的延长线于点N,试判断是否为定值?若是,请求出该定值;若不是,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点O为坐标原点,点A在第一象限,点Bx轴正半轴上,AO=ABOB=4tanAOB=2,点C是线段OA的中点.

1)求点C的坐标;

2)若点Px轴上的一个动点,使得∠APO=CBO,抛物线y=ax2+bx经过点A、点P,求这条抛物线的函数解析式;

3)在(2)的条件下,点M是抛物线图象上的一个动点,以M为圆心的圆与直线OA相切,切点为点N,点A关于直线MN的对称点为点D.请你探索:是否存在这样的点M,使得MAD∽△AOB?若存在,请直接写出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD的边ABx轴上,AB的中点与原点O重合,AB2AD1,点Q的坐标为(02).点Px0)在边AB上运动,若过点QP的直线将矩形ABCD的周长分成21两部分,则x的值为(  )

A. -B. -C. -D. -

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数yax+b与反比例函数y的图象交于AB两点,点A坐标为(m2),点B坐标为(﹣4n),OAx轴正半轴夹角的正切值为,直线ABy轴于点C,过Cy轴的垂线,交反比例函数图象于点D,连接ODBD

1)求一次函数与反比例函数的解析式;

2)求四边形OCBD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(本小题满分9分)如图,在矩形ABCD中,EAB边的中点,沿EC对折矩形ABCD,使B点落在点P处,折痕为EC,连结AP并延长APCDF点,

1)求证:四边形AECF为平行四边形;

2)若△AEP是等边三角形,连结BP,求证:△APB≌△EPC

3)若矩形ABCD的边AB=6BC=4,求△CPF的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形中,,以为圆心,为半径作⊙为⊙上一动点,连接.为直角边作,使,则点与点的最小距离为____.

查看答案和解析>>

同步练习册答案