| A. | ①② | B. | ②④ | C. | ①②④ | D. | ①②③④ |
分析 如图,通过证明△AOE≌△DOE得到∠OAE=∠ODE=90°,易证得ED是⊙O的切线;证得OE是△ABC的中位线,证得BC=2OE,由OE∥BC,证得∠AEO=∠C,通过三角形全等证得∠DEO=∠C,∠ODE=∠OAE=90°,从而∠ODE=∠ADC=90°,从而证得△EOD∽△CAD.
解答
证明:如图,连接OD.
∵AC⊥AB,
∴∠BAC=90°,即∠OAE=90°.
在△AOE与△DOE中,
$\left\{\begin{array}{l}{OA=OD}\\{AE=DE}\\{OE=OE}\end{array}\right.$,
∴△AOE≌△DOE(SSS),
∴∠OAE=∠ODE=90°,即OD⊥ED.
又∵OD是⊙O的半径,
∴ED是⊙O的切线;
∵AB是直径,
∴AD⊥BC,
∴∠DAE+∠C=90°,
∵AE=DE,
∴∠DAE=∠ADE,
∵∠ADE+∠EDC=90°,
∴∠EDC=∠C,
∴DE=EC,
∴AE=EC,
∵OA=OB,
∴OE∥BC,BC=2OE,
∴∠AEO=∠C,
∵△AOE≌△DOE,
∴∠DEO=∠C,∠ODE=∠OAE=90°,
∴∠ODE=ADC=90°,
∴△EOD∽△CAD.
∴正确的①②④,
故选C.
点评 本题考查了切线的判定,三角形全等的判定和性质,平行线的判定和性质以及三角形相似的判定等,熟练掌握性质定理是解题的关键.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com