精英家教网 > 初中数学 > 题目详情

【题目】下列各式中,不成立的是(  )

A.cos60°2sin30°B.sin15°cos75°

C.tan30°tan60°1D.sin230°+cos230°1

【答案】A

【解析】

根据一个角的正弦值等于它的余角的余弦值、一个角的正切值和它的余角的正切值互为倒数和一个角的正弦值与余弦值的平方和等于1逐一判断即可.

解:Acos60°sin90°-60°)=sin30°,错误;

Bsin15°cos90°-15°)=cos75°,正确;

Ctan30°tan60°1,正确;

Dsin230°+cos230°1,正确;

故选:A

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知x=﹣1是关于x的方程2x2+ax﹣a2=0的一个根,则a=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列计算正确的是(  )

A. (a+2)(a﹣2)=a2﹣2 B. (a+1)(a﹣2)=a2+a﹣2

C. (a+b)2=a2+b2 D. (a﹣b)2=a2﹣2ab+b2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读理解

材料一:一组对边平行,另一组对边不平行的四边形叫梯形,其中平行的两边叫梯形的底边,不平行的两边叫梯形的底边,不平行的两边叫梯形的腰,连接梯形两腰中点的线段叫梯形的中位线.梯形的中位线具有以下性质:梯形的中位线平行于两底和,并且等于两底和的一半.

如图(1):在梯形ABCD中:AD∥BC,

∵E、F是AB、CD的中点,∴EF∥AD∥BC,EF=(AD+BC).

材料二:经过三角形一边的中点与另一边平行的直线必平分第三边

如图(2):在△ABC中:∵E是AB的中点,EF∥BC

∴F是AC的中点.

请你运用所学知识,结合上述材料,解答下列问题.

如图(3)在梯形ABCD中,AD∥BC,AC⊥BD于O,E、F分别为AB、CD的中点,∠DBC=30°.

(1)求证:EF=AC;

(2)若OD=,OC=5,求MN的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列说法中正确的是(
A.掷两枚质地均匀的硬币,“两枚硬币都是正面朝上”这一事件发生的概率为
B.“对角线相等且相互垂直平分的四边形是正方形”这一事件是必然事件
C.“同位角相等”这一事件是不可能事件
D.“钝角三角形三条高所在直线的交点在三角形外部”这一事件是随机事件

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知2x+y=1,代数式(y+1)2-(y2-4x)的值为______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】绝对值等于其相反数的数一定是(
A.负数
B.正数
C.负数或零
D.正数或零

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在ABC中,ACB=90°,AC=BC,EAC=90°,点M为射线AE上任意一点(不与A重合),连接CM,将线段CM绕点C按顺时针方向旋转90°得到线段CN,直线NB分别交直线CM、射线AE于点F、D.

(1)直接写出NDE的度数;

(2)如图2、图3,当EAC为锐角或钝角时,其他条件不变,(1)中的结论是否发生变化?如果不变,选取其中一种情况加以证明;如果变化,请说明理由;

(3)如图4,若EAC=15°ACM=60°,直线CM与AB交于G,BD= ,其他条件不变,求线段AM的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题:如图(1),在RtACB中,ACB=90°,AC=CB,DCE=45°,试探究AD、DE、EB满足的等量关系.

[探究发现]

小聪同学利用图形变换,将CAD绕点C逆时针旋转90°得到CBH,连接EH,由已知条件易得EBH=90°ECH=ECB+BCH=ECB+ACD=45°根据“边角边”,可证△CEH≌ ,得EH=ED.

在Rt△HBE中,由 定理,可得BH2+EB2=EH2,由BH=AD,可得AD、DE、EB之间的等量关系是

[实践运用]

(1)如图(2),在正方形ABCD中,AEF的顶点E、F分别在BC、CD边上,高AG与正方形的边长相等,求EAF的度数;

(2)在(1)条件下,连接BD,分别交AE、AF于点M、N,若BE=2,DF=3,BM=2,运用小聪同学探究的结论,求正方形的边长及MN的长.

查看答案和解析>>

同步练习册答案