精英家教网 > 初中数学 > 题目详情

【题目】问题:如图(1),在RtACB中,ACB=90°,AC=CB,DCE=45°,试探究AD、DE、EB满足的等量关系.

[探究发现]

小聪同学利用图形变换,将CAD绕点C逆时针旋转90°得到CBH,连接EH,由已知条件易得EBH=90°ECH=ECB+BCH=ECB+ACD=45°根据“边角边”,可证△CEH≌ ,得EH=ED.

在Rt△HBE中,由 定理,可得BH2+EB2=EH2,由BH=AD,可得AD、DE、EB之间的等量关系是

[实践运用]

(1)如图(2),在正方形ABCD中,AEF的顶点E、F分别在BC、CD边上,高AG与正方形的边长相等,求EAF的度数;

(2)在(1)条件下,连接BD,分别交AE、AF于点M、N,若BE=2,DF=3,BM=2,运用小聪同学探究的结论,求正方形的边长及MN的长.

【答案】[探究发现]CDE;勾股;;[实践运用](1)45°;(2)正方形边长为6,MN=

【解析】

试题分析:(1)正方形的性质和全等三角形的判定方法证明RtABERtAGE和RtADFRtAGF,由全等三角形的性质即可求出EAF的度数

(2)由(1)知,RtABERtAGE,RtADFRtAGF,设AG=x,则CE=x﹣2,CF=x﹣3.因为得到.解这个方程,求出x的值即可得到AG=6,在(2)中,MN2=MB2+ND2,MN=a,求出a的值即可求出MN的长

试题解析:根据“边角边”,可证CEH≌△CDE,得EH=ED在RtHBE中,由勾股定理,可得,由BH=AD,可得AD、DE、EB之间的等量关系是;故答案为:CDE;勾股;

(1)在RtABE和RtAGE中,AB=AG,AE=AERtABERtAGE(HL),∴∠BAE=GAE,同理,RtADFRtAGF,∴∠GAF=DAF,四边形ABCD是正方形,∴∠BAD=90°,∴∠EAF=BAD=45°;

(2)由(1)知,RtABERtAGE,RtADFRtAGF,BE=EG=2,DF=FG=3,则EF=5,设AG=x,则CE=x﹣2,CF=x﹣3,,解这个方程,得x=6x=﹣1(舍去),AG=6,BD===AB=6,设MN=a,则,所以a=,即MN=

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】下列各式中,不成立的是(  )

A.cos60°2sin30°B.sin15°cos75°

C.tan30°tan60°1D.sin230°+cos230°1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知四边形ABCD是正方形,等腰直角AEF的直角顶点E在直线BC上(不与点B,C重合),FMAD,交射线AD于点M.

(1)当点E在边BC上,点M在边AD的延长线上时,如图①,求证:AB+BE=AM;

(提示:延长MF,交边BC的延长线于点H.)

(2)当点E在边CB的延长线上,点M在边AD上时,如图②;当点E在边BC的延长线上,点M在边AD上时,如图③.请分别写出线段AB,BE,AM之间的数量关系,不需要证明;

(3)在(1),(2)的条件下,若BE=AFM=15°,则AM=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知正方形ABCD,P为射线AB上的一点,以BP为边作正方形BPEF,使点F在线段CB的延长线上,连接EA、EC.

(1)如图1,若点P在线段AB的延长线上,求证:EA=EC;

(2)若点P在线段AB上.

①如图2,连接AC,当P为AB的中点时,判断△ACE的形状,并说明理由;

②如图3,设AB=a,BP=b,当EP平分∠AEC时,求a:b及∠AEC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】不属于中心对称图形的是(  )

A.长方形B.平行四边形

C.等腰直角三角形D.线段

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知数轴上点A表示的数为-6,点B在数轴上A点右侧,则AB=14,动点M从点A出发,以每秒5个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>O)秒.

(1)写出数轴上点B表示的数 , 点M表示的数 (用含t的式子表示).
(2)动点N从点B出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点M,N同时出发,问点M运动多少秒时追上点N?
(3)若P为AM的中点,F为MB的中点,点M在运动过程中,线段_PF的长度是否发生变化?若变化,请说明理由;若不变,请求出线段PF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知a2+b2+2a-4b+5=0,求2a2+4b-3的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在数轴上原点右侧的离原点越远的点表示的数越

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在正方形ABCD中,对角线AC与BD交于点O;在RtPMN中,MPN=90°

(1)如图1,若点P与点O重合且PMAD、PNAB,分别交AD、AB于点E、F,请直接写出PE与PF的数量关系;

(2)将图1中的RtPMN绕点O顺时针旋转角度α(0°α<45°).

如图2,在旋转过程中(1)中的结论依然成立吗?若成立,请证明;若不成立,请说明理由;

如图2,在旋转过程中,当DOM=15°时,连接EF,若正方形的边长为2,请直接写出线段EF的长;

如图3,旋转后,若RtPMN的顶点P在线段OB上移动(不与点O、B重合),当BD=3BP时,猜想此时PE与PF的数量关系,并给出证明;当BD=mBP时,请直接写出PE与PF的数量关系.

查看答案和解析>>

同步练习册答案