【题目】在正方形ABCD中,对角线AC与BD交于点O;在Rt△PMN中,∠MPN=90°.
(1)如图1,若点P与点O重合且PM⊥AD、PN⊥AB,分别交AD、AB于点E、F,请直接写出PE与PF的数量关系;
(2)将图1中的Rt△PMN绕点O顺时针旋转角度α(0°<α<45°).
①如图2,在旋转过程中(1)中的结论依然成立吗?若成立,请证明;若不成立,请说明理由;
②如图2,在旋转过程中,当∠DOM=15°时,连接EF,若正方形的边长为2,请直接写出线段EF的长;
③如图3,旋转后,若Rt△PMN的顶点P在线段OB上移动(不与点O、B重合),当BD=3BP时,猜想此时PE与PF的数量关系,并给出证明;当BD=mBP时,请直接写出PE与PF的数量关系.
【答案】(1)PE=PF;(2)①成立;②;③PE=2PF,PE=(m﹣1)PF.
【解析】
试题分析:(1)由正方形的性质和角平分线的性质解答即可;
(2)①由正方形的性质和旋转的性质证明△FOA≌△EOD,即可得到答案;
②作OG⊥AB于G,由余弦的概念求出OF的长,由勾股定理求值即可;
③过点P作HP⊥BD交AB于点H,由相似三角形的判定和性质求出PE与PF的数量关系,由解答结果总结规律得到当BD=mBP时,PE与PF的数量关系.
试题解析:(1)PE=PF,理由:∵四边形ABCD为正方形,∴∠BAC=∠DAC,又PM⊥AD、PN⊥AB,∴PE=PF;
(2)①成立,理由:∵AC、BD是正方形ABCD的对角线,∴OA=OD,∠FAO=∠EDO=45°,∠AOD=90°,∴∠DOE+∠AOE=90°,∵∠MPN=90°,∴∠FOA+∠AOE=90°,∴∠FOA=∠DOE,在△FOA和△EOD中,∵∠FAO=∠FDO,OA=OD,∠FOA=∠DOE,∴△FOA≌△EOD,∴OE=OF,即PE=PF;
②作OG⊥AB于G,∵∠DOM=15°,∴∠AOF=15°,则∠FOG=30°,∵cos∠FOG=,∴OF==,又OE=OF,∴EF=;
③PE=2PF,如图3,过点P作HP⊥BD交AB于点H,则△HPB为等腰直角三角形,∠HPD=90°,∴HP=BP,∵BD=3BP,∴PD=2BP,∴PD=2 HP,又∵∠HPF+∠HPE=90°,∠DPE+∠HPE=90°,∴∠HPF=∠DPE,又∵∠BHP=∠EDP=45°,∴△PHF∽△PDE,∴,即PE=2PF,由此规律可知,当BD=mBP时,PE=(m﹣1)PF.
科目:初中数学 来源: 题型:
【题目】问题:如图(1),在Rt△ACB中,∠ACB=90°,AC=CB,∠DCE=45°,试探究AD、DE、EB满足的等量关系.
[探究发现]
小聪同学利用图形变换,将△CAD绕点C逆时针旋转90°得到△CBH,连接EH,由已知条件易得∠EBH=90°,∠ECH=∠ECB+∠BCH=∠ECB+∠ACD=45°.根据“边角边”,可证△CEH≌ ,得EH=ED.
在Rt△HBE中,由 定理,可得BH2+EB2=EH2,由BH=AD,可得AD、DE、EB之间的等量关系是 .
[实践运用]
(1)如图(2),在正方形ABCD中,△AEF的顶点E、F分别在BC、CD边上,高AG与正方形的边长相等,求∠EAF的度数;
(2)在(1)条件下,连接BD,分别交AE、AF于点M、N,若BE=2,DF=3,BM=2,运用小聪同学探究的结论,求正方形的边长及MN的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(2013年四川泸州2分)下列各式计算正确的是【 】
A.(a7)2=a9 B.a7a2=a14 C.2a2+3a3=5a5 D.(ab)3=a3b3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】等边△ABC中,点E在AB上,点D在CA的延长线上,且ED=EC.试探索以下问题:
(1)如图1,当E为AB中点时,试确定线段AD与BE的大小关系,请你直接写出结论:
(2)如图2,若点E为线段AB上任意一点,(1)中结论是否成立,若成立,请证明结论,若不成立,请说明理由。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com