【题目】已知二次函数y=-3x+.
(1)该二次函数图象与x轴的交点坐标是______;
(2)将y=化成y=a(x-h)2+k的形式,并写出顶点坐标;
(3)在坐标轴中画出此抛物线的大致图象;
(4)写出不等式>0的解集.
【答案】(1)(1,0),(5,0);(2)y=(x-3)2-2,(3,2);(3)见解析;(4)x<1或x>5.
【解析】
(1)解方程x2-3x+=0,解得该二次函数图象与x轴的交点坐标;
(2)利用配方法得到y=(x-3)2-2,从而得到抛物线的顶点坐标;
(3)利用描点法画出二次函数的图象;
(4)利用函数图象,写出抛物线在x轴上方所对应的自变量的范围即可.
(1)当y=0时,-3x+=0,解得x1=1,x2=5,
所以该二次函数图象与x轴的交点坐标为(1,0),(5,0);
故答案为:(1,0),(5,0);
(2)y=-3x+=(x2-6x)+=(x2-6x+9-9)+=(x-3)2-2,
所以二次函数图象的顶点坐标为(3,2);
(3)当x=0时,y=x2-3x+=,则抛物线与y轴的交点坐标为(0,),
如图,
(4)不等式x2-3x+>0的解集为x<1或x>5.
科目:初中数学 来源: 题型:
【题目】抛物线y=ax2+bx+c(a<0)经过点(-1,0),且满足4a+2b+c>0.以下结论(1)a+b>0;(2)a+c>0;(3)-a+b+c>0;(4)b2-2ac>5a2其中正确的个数有( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,足球场上守门员在O处踢出一高球,球从离地面1m的A处飞出(A在y轴上),运动员乙在距O点6m的B处发现球在自己头的正上方达到最高点M,距地面有4m高,球落地后又一次弹起,第二个落点为D,据实验测算,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.
(1)求足球开始飞出到第一次落地时,该抛物线的解析式;
(2)求足球第一次落地点C处距守门员有多少米?(取≈1.7)
(3)运动员乙要抢到第二个落点D处的球,他应再向前跑多少米?(取≈2.5)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的边长为2,点E是AD边上的动点,从点A开始沿AD向D运动.以BE为边,在BE的上方作正方形BEFG,EF交DC于点H,连接CG、BH.请探究:
(1)线段AE与CG是否相等?请说明理由.
(2)若设AE=x,DH=y,当x取何值时,y最大?最大值是多少?
(3)当点E运动到AD的何位置时,△BEH∽△BAE?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,已知∠BAC=90°,AB=6,AC=8,点D是AC上的一点,将△ABC沿着过点D的一条直线翻折,使点C落在BC边上的点E处,连接AE、DE,当∠CDE=∠AEB时,AE的长是______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB为⊙O的直径,AB=4,C为半圆AB的中点,P为上一动点,延长BP至点Q,使BPBQ=AB2.若点P由A运动到C,则点Q运动的路径长为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数的部分图象如图,则下列说法:①对称轴是直线x=-1;②c=3:③ab>0;④当x<1时,y>0;⑤方程的根是和,正确的有( )
A. 2个B. 3个C. 4个D. 5个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】冬季,武隆仙女山迎来滑雪季,如图为滑雪场某段赛道示意图,AB段为助滑段,长为12米,坡角α为16°,一个曲面平台BCD连接了助滑坡AB与着陆坡DE,已知着陆坡DE的坡度为i=1:2.4,DE长度为19.5米,B、D之间的垂直距离为5.5米,则一人从A出发到E处下降的垂直距离为( )米(sin16°≈0.28,cos16°≈0.96,tan16°≈0.29,结果保留一位小数)
A. 15.9B. 16.4C. 24.5D. 16.0
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知在Rt△ABC中,AB=AC=3,在△ABC内作第一个内接正方形DEFG;然后取GF的中点P,连接PD、PE,在△PDE内作第二个内接正方形HIKJ;再取线段KJ的中点Q,在△QHI内作第三个内接正方形…依次进行下去,则第2014个内接正方形的边长为____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com