【题目】如图,直角坐标系中,直线分别交x,y轴于点A(-8,0),B(0,6),C(m,0)是射线AO上一动点,⊙P过B,O,C三点,交直线AB于点D(B,D不重合).
(1)求直线AB的函数表达式.
(2)若点D在第一象限,且tan∠ODC=,求点D的坐标.
【答案】(1);(2)D(,).
【解析】
(1)把A、B两点坐标代入y=kx+b求出k、b的值即可;(2)连结BC,作DE⊥OC于点E,根据圆周角定理可得∠OBC=∠ODC,由tan∠ODC=可求出OC的长,进而可得AC的长,利用∠DAC的三角函数值可求出DE的长,即可得D点纵坐标,代入直线AB解析式求出D点横坐标即可得答案.
(1)∵A(-8,0)、B(0,6)在y=kx+b上,
∴,
解得,
∴直线AB的函数表达式为y=x+6.
(2)连结BC,作DE⊥OC于点E,
∵∠BOC=90°,
∴BC为⊙P的直径,
∴∠ADC=90°,
∵∠OBC=∠ODC,tan∠ODC=,
∴,
∵OB=6,OA=8,
∴OC=10,AC=18,AB=10,
∵cos∠DAC==,sin∠DAC==,
,
,
∵D点在直线AB上,
∴,
解得:,
∴D(,)
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,,连结AC,过点C作直线l∥AB,点P是直线l上的一个动点,直线PA与⊙O交于另一点D,连结CD,设直线PB与直线AC交于点E.
(1)求∠BAC的度数;
(2)当点D在AB上方,且CD⊥BP时,求证:PC=AC;
(3)在点P的运动过程中
①当点A在线段PB的中垂线上或点B在线段PA的中垂线上时,求出所有满足条件的∠ACD的度数;
②设⊙O的半径为6,点E到直线l的距离为3,连结BD,DE,直接写出△BDE的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】关于一次函数y=5x﹣3的描述,下列说法正确的是( )
A. 图象经过第一、二、三象限B. 向下平移3个单位长度,可得到y=5x
C. 函数的图象与x轴的交点坐标是(0,﹣3)D. 图象经过点(1,2)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图①,②,在矩形ABCD中,AB=4,BC=8,P,Q分别是边BC,CD上的点.
(1)如图①,若AP⊥PQ,BP=2,求CQ的长;
(2)如图②,若=2,且E,F,G分别为AP,PQ,PC的中点,求四边形EPGF的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,AD=BC,∠A=∠B,E为AB的中点,连结CE,DE.
(1)求证:△ADE≌△BCE.
(2)若∠A=70°,∠BCE=60°,求∠CDE的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形ABCD中,E为边CD的中点,AE交BD于点O,若S△DOE=2,则平行四边形ABCD的面积为( )
A. 8B. 12C. 16D. 24
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABO中,∠BAO=90°,AO=AB,BO=8,点A的坐标(﹣8,0),点C在线段AO上以每秒2个单位长度的速度由A向O运动,运动时间为t秒,连接BC,过点A作AD⊥BC,垂足为点E,分别交BO于点F,交y轴于点 D.
(1)用t表示点D的坐标 ;
(2)如图1,连接CF,当t=2时,求证:∠FCO=∠BCA;
(3)如图2,当BC平分∠ABO时,求t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知⊙O的半径为10,圆心O到弦AB的距离为5,则弦AB所对的圆周角的度数是( )
A. 30° B. 60° C. 30°或150° D. 60°或120°
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com