分析 设$\sqrt{\frac{8x+1}{3}}$=a,然后表示出x=$\frac{3{a}^{2}+1}{8}$,从而得到$\frac{x+1}{3}$=$\frac{{a}^{2}+3}{8}$,然后分别表示出$\root{3}{x+\frac{x+1}{3}\sqrt{\frac{8x-1}{3}}}$=$\frac{a+1}{2}$和$\root{3}{x-\frac{x+1}{3}\sqrt{\frac{8x-1}{3}}}$=$\frac{1-a}{2}$,相加即可证得结论.
解答 解:设$\sqrt{\frac{8x+1}{3}}$=a,
则x=$\frac{3{a}^{2}+1}{8}$,
∴$\frac{x+1}{3}$=$\frac{{a}^{2}+3}{8}$,
∴$\root{3}{x+\frac{x+1}{3}\sqrt{\frac{8x-1}{3}}}$=$\root{3}{\frac{3{a}^{2}+1}{8}+\frac{a({a}^{2}+3)}{8}}$=$\root{3}{\frac{{a}^{3}+3a(a+1)+1}{8}}$=$\root{3}{\frac{(a+1)^{3}}{8}}$=$\frac{a+1}{2}$;
$\root{3}{x-\frac{x+1}{3}\sqrt{\frac{8x-1}{3}}}$=$\root{3}{\frac{3{a}^{2}+1}{8}-\frac{a({a}^{2}+3)}{8}}$=$\root{3}{\frac{3{a}^{2}+1-{a}^{3}-3a}{8}}$=$\root{3}{\frac{(1-a)^{3}}{8}}$=$\frac{1-a}{2}$,
∴$\root{3}{x+\frac{x+1}{3}\sqrt{\frac{8x-1}{3}}}$+$\root{3}{x-\frac{x+1}{3}\sqrt{\frac{8x-1}{3}}}$=$\frac{a+1}{2}$+$\frac{1-a}{2}$=1.
点评 本题考查了有理数与无理数的概念与运算,解题的关键是能够设出未知数,并表示出x,然后将代数式中的两项化简后相加即可得到结论.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com