矩形的性质,梯形的性质,锐角三角函数,特殊角的三角函数值,相似三角形的判定和性质,解直角三角形。
(1)①由四边形OABC是矩形,根据矩形的性质,即可求得点B的坐标:
∵四边形OABC是矩形,∴AB=OC,OA=BC,
∵A(6,0)、C(0,2
),∴点B的坐标为:(6,2
)。
②由正切函数,即可求得∠CAO的度数:
∵
,∴∠CAO=30°。
③由三角函数的性质,即可求得点P的坐标;如图:当点Q与点A重合时,过点P作PE⊥OA于E,
∵∠PQO=60°,D(0,3
),∴PE=3
。
∴
。
∴OE=OA﹣AE=6﹣3=3,∴点P的坐标为(3,3
)。
(2)分别从MN=AN,AM=AN与AM=MN去分析求解即可求得答案:
情况①:
MN=AN=3,则∠AMN=∠MAN=30°,
∴∠MNO=60°。
∵∠PQO=60°,即∠MQO=60°,∴点N与Q重合。
∴点P与D重合。∴此时m=0。
情况②,如图AM=AN,作MJ⊥x轴、PI⊥x轴。
MJ=MQ•sin60°=AQ•sin60
0 又
,
∴
,解得:m=3﹣
。
情况③AM=NM,此时M的横坐标是4.5,
过点P作PK⊥OA于K,过点M作MG⊥OA于G,
∴MG=
。
∴
。
∴KG=3﹣0.5=2.5,AG=
AN=1.5。∴OK=2。∴m=2。
综上所述,点P的横坐标为m=0或m=3﹣
或m=2。
(3)分别从当0≤x≤3时,当3<x≤5时,当5<x≤9时,当x>9时去分析求解即可求得答案。