精英家教网 > 初中数学 > 题目详情

【题目】小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中选两个作为补充条件,使ABCD为正方形(如图),现有下列四种选法,你认为其中错误的是(
A.①②
B.②③
C.①③
D.②④

【答案】B
【解析】解:A、∵四边形ABCD是平行四边形, 当①AB=BC时,平行四边形ABCD是菱形,
当②∠ABC=90°时,菱形ABCD是正方形,故此选项正确,不合题意;
B、∵四边形ABCD是平行四边形,
∴当②∠ABC=90°时,平行四边形ABCD是矩形,
当AC=BD时,这是矩形的性质,无法得出四边形ABCD是正方形,故此选项错误,符合题意;
C、∵四边形ABCD是平行四边形,
当①AB=BC时,平行四边形ABCD是菱形,
当③AC=BD时,菱形ABCD是正方形,故此选项正确,不合题意;
D、∵四边形ABCD是平行四边形,
∴当②∠ABC=90°时,平行四边形ABCD是矩形,
当④AC⊥BD时,矩形ABCD是正方形,故此选项正确,不合题意.
故选:B.
利用矩形、菱形、正方形之间的关系与区别,结合正方形的判定方法分别判断得出即可.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在四边形ABCD中,AB∥CD,∠BCD=90o,AB=AD=10cm,BC=8cm,点P从点A出发,沿折线ABCD方向以3cm/s的速度匀速运动;点Q从点D出发,沿线段

DC方向以2cm/s的速度匀速运动. 已知两点同时出发,当一个点到达终点时,另一点也停止运动,设运动时间为t(s).

(1)求CD的长;

(2)当四边形PBQD为平行四边形时,求四边形PBQD的周长;

(3)在点P、Q的运动过程中,是否存在某一时刻,使得△BPQ的面积为20cm2?若存在,请求出所有满足条件的t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列各数中,比﹣2大的数是(  )

A.4B.3C.2D.1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列命题中,是真命题的是(  )

A.四条边相等的四边形是矩形

B.对角线互相平分的四边形是矩形

C.四个角相等的四边形是矩形

D.对角线相等的四边形是矩形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知A(﹣4,n),B(2,﹣4)是一次函数y=kx+b的图象和反比例函数y= 的图象的两个交点.
(1)求反比例函数和一次函数的解析式;
(2)求直线AB与x轴的交点C的坐标及△AOB的面积;
(3)直接写出一次函数的值小于反比例函数值的x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有一组数椐:3,4,5,6,6,则下列四个结论中正确的是(
A.这组数据的平均数、众数、中位数分别是4.8,6,6
B.这組数据的平均数、众数、中位数分别是5,5,5
C.这组数据的平均数、众数、中位数分别是4.8,6,5
D.这组数据的平均数、众数、中位数分别是5,6,6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有下列说法:①电线杆可看做射线,②探照灯光线可看做射线,③A地到B地的高速公路可看做一条直线.其中正确的有(  )
A. 0个
B.1个
C.2个
D.3个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】十九大报告中提出广泛开展全民健身活动加快推进体育强国建设为了响应号召提升学生训练兴趣某中学自编“功夫扇”课间操.若设最外侧两根大扇骨形成的角为∠COD当“功夫扇”完全展开时∠COD=160°在扇子舞动过程中扇钉O始终在水平线AB上.

小华是个爱思考的孩子不但将以上实际问题抽象为数学问题而且还在抽象出的图中画出了∠BOC 的平分线OE以便继续探究.

1当扇子完全展开且一侧扇骨OD呈水平状态时如图1所示.请在抽象出的图2中画出∠BOC 的平分线OE此时∠DOE的度数为

2“功夫扇”课间操有一个动作是把扇子由图1旋转到图3所示位置即将图2中的∠COD绕点O旋转至图4所示位置其他条件不变小华尝试用如下两种方案探究了∠AOC和∠DOE度数之间的关系.

方案一设∠BOE的度数为x

可得出.

.

进而可得∠AOC和∠DOE度数之间的关系.

方案二如图5过点O作∠AOC的平分线OF

易得.

可得.

进而可得∠AOC和∠DOE度数之间的关系.

参考小华的思路可得AOC和∠DOE度数之间的关系为

3继续将扇子旋转至图6所示位置即将∠COD绕点O旋转至如图7所示的位置其他条件不变请问2中结论是否依然成立?说明理由

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下列第(1)题中的计算方法,再计算第(2)题中式子的值.

1+9+17+3

解:原式=[5+]+[9+]+[+17++]+[3+]

=[5+9++17+3]+[++++]

=0+1

=1

上面这种方法叫拆项法.仿照上述方法计算:

2)(2008+2007+4017+1

查看答案和解析>>

同步练习册答案