精英家教网 > 初中数学 > 题目详情

【题目】如图,直线l上有AB两点,点O是线段AB上的一点,且OA=10cmOB=5cm

(1)若点C是线段 AB 的中点,求线段CO的长

(2)若动点 PQ 分别从 AB 同时出发,向右运动,点P的速度为4cm/s,点Q的速度为3cm/s,设运动时间为 x 秒,

①当 x=__________秒时,PQ=1cm

②若点M从点O7cm/s的速度与PQ两点同时向右运动,是否存在常数m,使得4PM+3OQmOM为定值,若存在请求出m值以及这个定值;若不存在,请说明理由.

(3)若有两条射线 OCOD 均从射线OA同时绕点O顺时针方向旋转OC旋转的速度为6/秒,OD 旋转的速度为2/.OCOD第一次重合时,OCOD 同时停止旋转,设旋转时间为t秒,当t为何值时,射线 OCOD

【答案】(1)CO=2.5;(2)1416 ;②定值55,理由见解析;(3)t=22.567.5

【解析】

1)先求出线段AB的长然后根据线段中点的定义解答即可

2)①由PQ=1,得到|15-(4x-3x)|=1,解方程即可;

②先表示出PMOQOM的长代入4PM+3OQmOM得到55+(21-7mx要使4PM+3OQmOM为定值,则21-7m=0,解方程即可;

3)分两种情况讨论,画出图形,根据图形列出方程,解方程即可.

1)∵OA=10cmOB=5cm,∴AB=OA+OB=15cm

C是线段 AB 的中点,∴AC=AB=7.5cm,∴CO=AO-AC=10-7.5=2.5cm).

2)①∵PQ=1,∴|15-(4x-3x)|=1,∴|15-x|=1,∴15-x1,解得:x=1416

②∵PM=10+7x-4x=10+3xOQ=5+3xOM=7x,∴4PM+3OQmOM=4(10+3x)+3(5+3x)-7mx=55+(21-7mx要使4PM+3OQmOM为定值,则21-7m=0,解得:m=3,此时定值为55

3)分两种情况讨论:①如图1,根据题意得:6t-2t=90,解得t=22.5;

②如图2,根据题意得:6t+90=360+2t解得t=67.5.

综上所述:当t=22.5秒和67.5秒时射线 OCOD

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】问题情境:如图,在RtABC中,∠ACB=90°BAC=30°.

动手操作:(1)若以直角边AC所在的直线为对称轴.将RtABC作轴对称变换,请你在原图上作出它的对称图形:

观察发现:(2)RtABC和它的对称图形组成了什么图形?你最准确的判断是   

合作交流:(3)根据上面的图形,请你猜想直角边BC与斜边AB的数量关系,并证明你的猜想.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线l1分别与x轴、y轴交于点B、C,且与直线l2交于点A.

(1)求出点A的坐标

(2)若D是线段OA上的点,且△COD的面积为12,求直线CD的解析式

(3)在(2)的条件下,设P是射线CD上的点,在平面内是否存在点Q,使以O、C、P、Q为顶点的四边形是菱形?若存在,直接写出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】大润发超市进了一批成本为8元/个的文具盒.调查发现:这种文具盒每个星期的销售量y(个)与它的定价x(元/个)的关系如图所示:
(1)求这种文具盒每个星期的销售量y(个)与它的定价x(元/个)之间的函数关系式(不必写出自变量x的取值范围);
(2)每个文具盒定价是多少元时,超市每星期销售这种文具盒(不考虑其他因素)可获得的利润最高?最高利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2011年5月22日﹣29日在美丽的青岛市举行了苏迪曼杯羽毛球混合团体锦标赛.在比赛中,某次羽毛球的运动路线可以看作是抛物线y=﹣ x2+bx+c的一部分(如图),其中出球点B离地面O点的距离是1m,球落地点A到O点的距离是4m,那么这条抛物线的解析式是(  )
A.y=﹣ x2+ x+1
B.y=﹣ x2+ x﹣1
C.y=﹣ x2 x+1
D.y=﹣ x2 x﹣1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】随着人们生活水平的提高,家用轿车越来越多地进入家庭.小明家中买了一辆小轿车,他连续记录了7天中每天行驶的路程(如表),以50km为标准,多于50km的记为“+”,不足50km的记为“﹣”,刚好50km的记为“0”.

第一天

第二天

第三天

第四天

第五天

第六天

第七天

路程(km)

﹣8

﹣11

﹣14

0

﹣16

+41

+8

(1)请求出这七天平均每天行驶多少千米;

(2)若每行驶100km需用汽油6升,汽油价6.2元/升,请估计小明家一个月(按30天计)的汽油费用是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,E,F,G,H分别是边AB,DC,BC,AD上的点,且AE=CF,BG=DH.求证:EF与GH互相平分.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】常数a,b,c在数轴上的位置如图所示,则关于x的一元二次方程ax2+bx+c=0根的情况是(
A.有两个相等的实数根
B.有两个不相等的实数根
C.无实数根
D.无法确定

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点M为锐角三角形ABC内任意一点,连接AM、BM、CM.以AB为一边向外作等边三角形△ABE,将BM绕点B逆时针旋转60°得到BN,连接EN.

(1)求证:△AMB≌△ENB;

(2)若AM+BM+CM的值最小,则称点M△ABC的费马点.若点M△ABC的费马点,试求此时∠AMB、∠BMC、∠CMA的度数;

(3)小翔受以上启发,得到一个作锐角三角形费马点的简便方法:如图,分别以△ABCAB、AC为一边向外作等边△ABE和等边△ACF,连接CE、BF,设交点为M,则点M即为△ABC的费马点.试说明这种作法的依据.

查看答案和解析>>

同步练习册答案