精英家教网 > 初中数学 > 题目详情

【题目】某商店周年庆,印刷了1000张奖券,其中印有老虎图案的有10,每张奖金1000,印有羊图案的有50,每张奖金100,印有鸡图案的有100,每张奖金20,印有兔子图案的有400,每张奖金2,其余印有花朵图案但无奖金,从中任意抽取一张,请解答下列问题:

(1)获得1000元奖金的概率是多少?

(2)获得奖金的概率是多少?

(3)若要使获得2元奖金的概率为,则需要将多少张印有花朵图案的奖券换为印有兔子图案的奖券?

【答案】(1);(2);(3) 需要将600张印有花朵图案的奖券换为印有兔子图案的奖券

【解析】

(1)10000张奖券中有10张印有老虎图案,每张奖金1000元,再根据概率公式即可得出答案;
(2)先求出能获得奖金的奖票张数,再根据概率公式即可得出答案;
(3)设需要将x张印有花朵图案的奖券换为印有兔子图案的奖券,根据概率公式列出算式,求出x的值即可.

(1)获得1000元奖金的概率是

(2)由题意知:能获得奖金的奖票有10+50+100+400=560获得奖金的概率是

(3)设需要将x张印有花朵图案的奖券换为印有兔子图案的奖券,根据题意得:

解得:x=600,
答:需要将600张印有花朵图案的奖券换为印有兔子图案的奖券.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,AB为⊙O的直径,C为⊙O上一点,弦AD平分∠BAC,交BC于点E,AB=6,AD=5,则AE的长为(
A.2.5
B.2.8
C.3
D.3.2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】列方程解应用题

情景:

试根据图中的信息,解答下列问题:

(1)购买6根跳绳需___________元,购买12根跳绳需_____________元

(2)小红比小明多买2根,付款时小红反而比小明少5元,你认为有这种可能吗?若有,请求出小红购买跳绳的根数;若没有,请说明理由

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线l上摆放着两块大小相同的直角三角形△ABC和△ECD∠ACB=∠DCE=90°,且BC=CE=3AC=CD=4,将△ECD绕点C逆时针旋转到△E1CD1位置,且D1E1∥l ,则BE1两点之间的距离为___________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】端午节三天假期的某一天,小明全家上午8时自驾小汽车从家里出发,到章丘某旅游景点游玩.该小汽车离家的距离S(千米)与时间t(小时)的关系如图所示.根据图象提供的有关信息,下列说法中错误的是( )

A. 景点离小明家180千米 B. 小明到家的时间为17点

C. 返程的速度为60千米每小时 D. 10点至14点,汽车匀速行驶

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】火车站、机场、邮局等场所都有为旅客提供打包服务的项目.现有一个长、宽、高分别为a、b 、30的箱子(其中a>b),准备采用如图①、②的两种打包方式,所用打包带的总长(不计接头处的长)分别记为

(1)图①中打包带的总长=________.

图②中打包带的总长=________.

(2)试判断哪一种打包方式更节省材料,并说明理由.(提醒:先判断再说理,说理过程即为比较 的大小.)

(3)b=40a为正整数,在数轴上表示数的两点之间有且只有19个整数点,求a 的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】数轴是一个非常重要的数学工具,它使数和数轴上的点建立起对应关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.在数轴上若点AB分别表示有理数ab ,在数轴上AB两点之间的距离AB=| a-b | .结合数轴与绝对值的知识回答下列问题:

(1)数轴上表示﹣3和2的两点之间的距离是_____;数轴上表示 x 和 -3 两点之间的距离是_____

(2)若a表示一个有理数,则|a+4|+|a﹣2|有最小值吗?若有,请求出最小值;若没有,请说明理由;

(3)当a =_____时,|a+4|+|a﹣1|+|a﹣2|的值最小,最小值是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图,有下列5个结论:
①abc<0;②3a+c>0;③4a+2b+c>0;④2a+b=0;⑤b2>4ac
其中正确的结论的有(

A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,数轴上有 A、B 两点,所表示的有理数分别为 ab,已知 AB=12,原点 O 是线段AB 上的一点,且 OA=2OB.

1ab

2若动点 PQ 分别从 AB 同时出发,向右运动,点 P 的速度为每秒 2 个单位长度,点 Q 的速度为每秒 1 个单位长度,设运动时间为 t 秒,当点 P 与点 Q 重合时,PQ 两点停止运动.

①当 t 为何值时,2OPOQ=4

②当点 P 到达点 O 时,动点 M 从点 O 出发,以每秒 3 个单位长度的速度也向右运动,当点 M 追上点 Q 后立即返回,以同样的速度向点 P 运动,遇到点 P 后再立即返回,以同样的速度向点 Q 运动,如此往返,直到点 PQ 停止时,点 M 也停止运动,求在此过程中点 M 行驶的总路程,并直接写出点 M 最后位置在数轴上所对应的有理数.

查看答案和解析>>

同步练习册答案