精英家教网 > 初中数学 > 题目详情

【题目】如图,一次函数与反比例函数的图像交于AB两点,点P在以为圆心,1为半径的⊙C上,QAP的中点,则OQ的最大值为(

A.B.C.D.

【答案】D

【解析】

先联立两个函数解析式求出点AB的坐标,连接BP,根据三角形的中位线定理可得,所以当BP最大时,OQ最大,此时BP过圆心C,如图,过点BBDx轴于点D,在直角△BCD中,根据勾股定理可求得BC的长,即得BP的长,进而可得答案.

解:解方程组,得,∴A(2)B(,-2).

连接BP,∵OA=OBQA=QP,∴,所以当BP最大时,OQ最大,此时BP过圆心C,如图,过点BBDx轴于点D,则OD=BD=2

OC=2,∴CD=

在直角△BCD中,根据勾股定理,得

.

.

故选D.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】下列说法正确的是

A.袋中有形状、大小、质地完全一样的5个红球和1个白球,从中随机抽出一个球,一定是红球

B.天气预报“明天降水概率10%”,是指明天有10%的时间会下雨

C.某地发行一种福利彩票,中奖率是千分之一,那么,买这种彩票1000张,一定会中奖

D.连续掷一枚均匀硬币,若5次都是正面朝上,则第六次仍然可能正面朝上

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABCD的对角线AC、BD交于点O,AE平分BAD交BC于点E,且∠ADC=60°,AB=BC,连接OE.下列结论:①∠CAD=30°;②SABCD=ABAC;③OB=AB;④OE=BC,成立的个数有(  )

A. 1个 B. 2个 C. 3个 D. 4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一个不透明的袋子中,装有除颜色外其余均相同的红、蓝两种球,已知其中红球有3个,且从中任意摸出一个是红球的概率为0.75.

(1)根据题意,袋中有 个蓝球.

(2)若第一次随机摸出一球,不放回,再随机摸出第二个球.请用画树状图或列表法求“摸到两球中至少一个球为蓝球(记为事件A)”的概率P(A).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知A(﹣4n),B2,﹣4)是一次函数ykx+b的图象和反比例函数y的图象的两个交点.

1)求反比例函数和一次函数的解析式;

2)求直线ABx轴的交点C的坐标及△AOB的面积;

3)直接写出一次函数的值小于反比例函数值的x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,函数的图象与直线交于点.

1)求km的值;

2)已知点,过点P作平行于x轴的直线,交直线于点M,过点P作平行于y轴的直线,交函数的图象于点N.

①当时,判断线段PMPN的数量关系,并说明理由;

②用含n的式子表示PN,则________.

③若,结合函数的图象,直接写出n的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A是⊙O直径BD延长线上的一点,AC是⊙O的切线,C为切点.ADCD,

(1)求证:ACBC;

(2)若⊙O的半径为1,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知点A20),点B13).

1)画出将△OAB绕原点顺时针旋转90°后所得的△OA1B1,并写出点A1B1的坐标;

2)画出△OAB关于原点O的中心对称图形△OA2B2,并写出点A2B2的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列说法正确的是

A.袋中有形状、大小、质地完全一样的5个红球和1个白球,从中随机抽出一个球,一定是红球

B.天气预报“明天降水概率10%”,是指明天有10%的时间会下雨

C.某地发行一种福利彩票,中奖率是千分之一,那么,买这种彩票1000张,一定会中奖

D.连续掷一枚均匀硬币,若5次都是正面朝上,则第六次仍然可能正面朝上

查看答案和解析>>

同步练习册答案