【题目】某企业为杭州计算机产业基地提供电脑配件.受美元走低的影响,从去年1至9月,该配件的原材料价格一路攀升,每件配件的原材料价格y1(元)与月份x(1≤x≤9,且x取整数)之间的函数关系如下表:
月份x | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
价格y1(元/件) | 560 | 580 | 600 | 620 | 640 | 660 | 680 | 700 | 720 |
随着国家调控措施的出台,原材料价格的涨势趋缓,10至12月每件配件的原材料价格y2(元)与月份x(10≤x≤12,且x取整数)之间存在如图所示的变化趋势:
(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识,直接写出y1 与x之间的函数关系式,根据如图所示的变化趋势,直接写出y2与x之间满足的一次函数关系式;
(2)若去年该配件每件的售价为1000元,生产每件配件的人力成本为50元,其它成本30元,该配件在1至9月的销售量p1(万件)与月份x满足关系式p1=0.1x+1.1(1≤x≤9,且x取整数),10至12月的销售量p2(万件)p2=﹣0.1x+2.9(10≤x≤12,且x取整数).求去年哪个月销售该配件的利润最大,并求出这个最大利润.
【答案】(1)y1=20x+540,y2=10x+630;(2)去年4月销售该配件的利润最大,最大利润为450万元.
【解析】
(1)利用待定系数法,结合图象上点的坐标求出一次函数解析式即可;
(2)根据生产每件配件的人力成本为50元,其它成本30元,以及售价销量进而求出最大利润.
(1)利用表格得出函数关系是一次函数关系:
设y1=kx+b,
∴
解得:
∴y1=20x+540,
利用图象得出函数关系是一次函数关系:
设y2=ax+c,
∴
解得:
∴y2=10x+630.
(2)去年1至9月时,销售该配件的利润w=p1(1000﹣50﹣30﹣y1),
=(0.1x+1.1)(1000﹣50﹣30﹣20x﹣540)=﹣2x2+16x+418,
=﹣2( x﹣4)2+450,(1≤x≤9,且x取整数)
∵﹣2<0,1≤x≤9,∴当x=4时,w最大=450(万元);
去年10至12月时,销售该配件的利润w=p2(1000﹣50﹣30﹣y2)
=(﹣0.1x+2.9)(1000﹣50﹣30﹣10x﹣630),
=( x﹣29)2,(10≤x≤12,且x取整数),
∵10≤x≤12时,∴当x=10时,w最大=361(万元),
∵450>361,∴去年4月销售该配件的利润最大,最大利润为450万元.
科目:初中数学 来源: 题型:
【题目】已知:如图,在△ABC中,AB=AC,AD是BC边上的中线.求证:AD⊥BC.
(填空)
证明:∵AD是BC边上的中线
∴BD=CD(中线的意义)
在△ABD和△ACD中
∵
①________;②________;③________.
∴ ________≌ ________(________)
∴∠ADB=________(________)
∴∠ADB= ∠BDC=90°(平角的定义)
∴AD⊥BC(垂直的定义)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了传承中华优秀传统文化,市教育局决定开展“经典诵读进校园”活动,某校团委组织八年级100名学生进行“经典诵读”选拔赛,赛后对全体参赛学生的成绩进行整理,得到下列不完整的统计图表。
组别 | 分数段 | 频次 | 频率 |
A | 60x<70 | 17 | 0.17 |
B | 70x<80 | 30 | a |
C | 80x<90 | b | 0.45 |
D | 90x<100 | 8 | 0.08 |
请根据所给信息,解答以下问题:
(1)表中a=___,b=___;
(2)请计算扇形统计图中B组对应扇形的圆心角的度数;
(3)已知有四名同学均取得98分的最好成绩,其中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加市级比赛,请用列表法或画树状图法求甲、乙两名同学都被选中的概率。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某教育科技公司销售A,B两种多媒体,这两种多媒体的进价与售价如表所示:
该教育科技公司计划购进两种多媒体共50套,共需资金132万元 .
(1)该教育科技公司计划购进A,B两种多媒体各多少套?
(2)经过市场调查后,该商店决定在原计划50套多媒体的基础上,减少A的购进数量,增加B 的购进数量,已知B种多媒体增加的数量是A种多媒体减少数量的1.5倍,全部销售后可以获取毛利润21万元,问实际购进A种多媒体多少套?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且∠CBF=∠CAB.
(1)求证:直线BF是⊙O的切线;
(2)若AB=5,sin∠CBF=,求BC和BF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC.
(1)尺规作图:过点C作AB的垂线交AB于点O.不写作法,保留作图痕迹;
(2)分别以直线AB,OC为x轴,y轴建立平面直角坐标系,使点B,C 均在正半轴上.若AB=7.5,OC=4.5,∠A=45°,写出点B关于y轴的对称点D的坐标;
(3)在(2)的条件下,求△ACD的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,等腰直角三角形OAA1的直角边OA在x轴上,点A1在第一象限,且OA=1,以点A1为直角顶点,0A1为一直角边作等腰直角三角形OA1A2,再以点A2为直角顶点,OA2为直角边作等腰直角三角形OA2A3…依此规律,则点A2019的坐标是_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com