精英家教网 > 初中数学 > 题目详情

【题目】△ABC的两条中线AD、BE交于点F,连接CF,若△ABC的面积为24,则△ABF的面积为( )

A. 10 B. 8 C. 6 D. 4

【答案】B

【解析】由中线得:SABD=SADCSABD=SABE,由已知SABC=24,得出ABEABD的面积为12,根据等式性质可知SAEF=SBDF,结合中点得:SAEF=SEFC=SDFC=SADC,相当于把ADC的面积平均分成三份,每份为4,由此可得SABF=SABD-SBDF

AD是中线,

SABD=SADC=SABC

SABC=24,

SABD=SADC=×24=12,

同理SABE=12,

SABD=SABE

SABD-SABF=SABE-SABF

SAEF=SBDF

D是中点,

SBDF=SDFC

同理SAEF=SEFC

SAEF=SEFC=SDFC=SADC=×12=4,

SABF=SABD-SBDF=12-4=8,

故选B.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知:如图,∠1=∠2,∠3=∠E试说明:A=∠EBC(请按图填空,并补理由.)

证明:∵∠1=∠2 (已知),

∴________∥_______( ),

∴∠E=∠_______ ( ),

∵∠E=∠3 (已知),

∴∠3=∠____________ ( 等量代换 ),

_________________ (内错角相等,两直线平行),

∴∠A=∠EBC ( ).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:在x轴的上方,直角∠BOA绕原点O顺时针方向旋转,若∠BOA的两边分别与函数y=﹣ 、y= 的图象交于B、A两点,则tanA=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线y=a(x+3)(x﹣1)(a≠0),与x轴从左至右依次相交于A、B两点,与y轴相交于点C,经过点A的直线y=﹣ x+b与抛物线的另一个交点为D.

(1)若点D的横坐标为2,求抛物线的函数解析式;
(2)若在第三象限内的抛物线上有点P,使得以A、B、P为顶点的三角形与△ABC相似,求点P的坐标;
(3)在(1)的条件下,设点E是线段AD上的一点(不含端点),连接BE.一动点Q从点B出发,沿线段BE以每秒1个单位的速度运动到点E,再沿线段ED以每秒 个单位的速度运动到点D后停止,问当点E的坐标是多少时,点Q在整个运动过程中所用时间最少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(4分)如图,直线l外不重合的两点A、B,在直线l上求作一点C,使得AC+BC的长度最短,作法为:作点B关于直线l的对称点B′;连接AB′与直线l相交于点C,则点C为所求作的点在解决这个问题时没有运用到的知识或方法是(

A转化思想

B三角形的两边之和大于第三边

C两点之间,线段最短

D三角形的一个外角大于与它不相邻的任意一个内角

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】AB两地相距2400米,甲、乙两人分别从AB两地同时出发相向而行,乙的速度是甲的2倍,已知乙到达A15分钟后甲到达B地.

(1)求甲每分钟走多少米?

(2)两人出发多少分钟后恰好相距480米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】世界上大部分国家都使用摄氏温度(℃),但美国,英国等国家的天气预报都使用华氏温度(),两种计量之间有如下对应:

摄氏温度(℃)

0

10

华氏温度(℉)

32

50

已知华氏温度y(℉)是摄氏温度x(℃)的一次函数.

求该一次函数的解析式;

当华氏温度14℉时,求其所对应的摄氏温度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】盛盛同学到某高校游玩时,看到运动场的宣传栏中的部分信息(如下表):

院系篮球赛成绩公告

比赛场次

胜场

负场

积分

22

12

10

34

22

14

8

36

22

0

22

22

盛盛同学结合学习的知识设计了如下问题,请你帮忙完成下列问题:

(1)从表中可以看出,负一场积______,胜一场积_______

(2)某队在比完22场的前提下,胜场总积分能等于其负场总积分的2倍吗?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知两个分别含有30°,45°角的一副直角三角板.

(1)如图1叠放在一起

OC恰好平分∠AOB,∠AOD=

若∠AOC=40°,∠BOD=

(2)如图2叠放在一起,∠AOD=4∠BOC,试计算∠AOC的度数.

查看答案和解析>>

同步练习册答案