【题目】如图:在x轴的上方,直角∠BOA绕原点O顺时针方向旋转,若∠BOA的两边分别与函数y=﹣ 、y= 的图象交于B、A两点,则tanA= .
【答案】
【解析】解:如图,分别过点A、B作AN⊥x轴、BM⊥x轴;
∵∠AOB=90°,
∴∠BOM+∠AON=∠AON+∠OAN=90°,
∴∠BOM=∠OAN,
∵∠BMO=∠ANO=90°,
∴△BOM∽△OAN,
∴ = ;
设B(﹣m, ),A(n, ),
则BM= ,AN= ,OM=m,ON=n,
∴mn= ,mn= ;
∵∠AOB=90°,
∴tan∠OAB= ①;
∵△BOM∽△OAN,
∴ = = = ②,
由①②知tan∠OAB= ,
故答案为: .
如图,作辅助线;首先证明△BOM∽△OAN,得到 = ,设B(﹣m, ),A(n, ),得到BM= ,AN= ,OM=m,ON=n,进而得到mn= ,mn= ,此为解决问题的关键性结论;运用三角函数的定义证明知tan∠OAB= ,即可解决问题.
科目:初中数学 来源: 题型:
【题目】骰子是一种特别的数字立方体(如图),它符合规则:相对两面的点数之和总是7,下面四幅图中可以折成符合规则的骰子的是( ).
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC内接于⊙O,AB是⊙O的直径,∠B=30°,CE平分∠ACB交⊙O于E,交AB于点D,连接AE,则S△ADE:S△CDB的值等于( )
A.1:
B.1:
C.1:2
D.2:3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】父亲告诉小明:“距离地面越高,温度越低”,并给小明出示了下面的表格:
距离地面高度(千米)h | 0 | 1 | 2 | 3 | 4 | 5 |
温度(℃)t | 20 | 14 | 8 | 2 | ﹣4 | ﹣10 |
根据表中,父亲还给小明出了下面几个问题,请你帮助小明回答下列问题:
(1)表中自变量是 ;因变量是 ;当地面上(即h=0时)时,温度是 ℃.
(2)如果用h表示距离地面的高度,用t表示温度,请写出满足t与h关系的式子.
(3)计算出距离地面6千米的高空温度是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小刚参加射击比赛,成绩统计如下表:
成绩(环) | |||||
次数 |
关于他的射击成绩,下列说法正确的是( )
A. 极差是2环 B. 中位数是8环 C. 众数是9环 D. 平均数是9环
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学开通了互联网家校合育教育平台,为了解家长使用平台的情况,学校将家长的使用情况分为”经常使用”、“偶尔使用”“和“不使用”三种类型,借助该平台大数据功能,汇总出该校八(1)班和八(2)班全体家长的使用情况,并绘制成如图所示的两幅不完整的统计图:
请根据图中信息解答下列问题
(1)此次调查的家长总人数为 ;
(2)扇形统计图中代表“不使用”类型的扇形圆心角的度数是 °,并补全条形统计图;
(3)若该校八年级学生家长共有1200人,根据此次调查结果估计该校八年级中“经常使用”类型的家长约有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知一次函数的图象与x轴、y轴分别交于A、B两点且与反比例函数的图象在第一象限交于C点,CD⊥轴于D点,若∠CAD=,AB =,CD =
(1)求点A、B、D的坐标;
(2)求一次函数的解析式;
(3)反比例函数的解析式;
(4)求△BCD的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com