精英家教网 > 初中数学 > 题目详情

【题目】如图,四边形ABCD是菱形,对角线AC,BD相交于点O,DH⊥AB于点H,连接OH,求证:∠DHO=∠DCO.

【答案】证明见解析

【解析】试题分析:根据菱形的对角线互相平分可得OD=OB,再根据直角三角形斜边上的中线等于斜边的一半可得OH=OB,然后根据等边对等角求出∠OHB=∠OBH,根据两直线平行,内错角相等求出∠OB

H=∠ODC,然后根据等角的余角相等证明即可.

试题解析:四边形ABCD是菱形,

∴OD=OB∠COD=90°

∵DH⊥AB

OH=BD=OB

∴∠OHB=∠OBH

∵AB∥CD

∴∠OBH=∠ODC

Rt△COD中,∠ODC+∠DCO=90°

Rt△DHB中,∠DHO+∠OHB=90°

∴∠DHO=∠DCO

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】一天,某客运公司的甲、乙两辆客车分别从相距380千米的A、B两地同时出发相向而行,并以各自的速度匀速行驶,两车行驶2小时时甲车先到达服务区C地,此时两车相距20千米,甲车在服务区C地休息了20分钟,然后按原速度开往B地;乙车行驶2小时15分钟时也经过C地,未停留继续开往A地.(友情提醒:画出线段图帮助分析)

(1)乙车的速度是________千米/小时,B、C两地的距离是________千米, A、C两地的距离是________千米;

(2)求甲车的速度;

(3)这一天,乙车出发多长时间,两车相距200千米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在四边形ABCD中,∠B=90°,AC=4,AB∥CD,DH垂直平分AC,点H为垂足.设AB=x,AD=y,则y关于x的函数关系用图象大致可以表示为( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙O的圆心在定角∠αα180°)的角平分线上运动,且⊙O∠α的两边相切,图中阴影部分的面积S关于⊙O的半径rr0)变化的函数图象大致是( )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知函数y=ax2﹣2ax﹣1(a是常数,a≠0),下列结论正确的是( )
A.当a=1时,函数图象过点(﹣1,1)
B.当a=﹣2时,函数图象与x轴没有交点
C.若a>0,则当x≥1时,y随x的增大而减小
D.若a<0,则当x≤1时,y随x的增大而增大

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图, ∠ADE+∠BCF=180°,BE平分∠ABC, ∠ABC=2∠E.

(1)ADBC平行吗?请说明理由;

(2)ABEF的位置关系如何?为什么?

(3)AF平分∠BAD,试说明: ∠E+∠F=90°.

(:本题第(1)(2)小题在下面的解答过程的空格内填写理由或数学式;(3)小题要写出解题过程)

:(1) ADB∥C,理由如下:

∵∠ADE+∠BCF=180°(已知) ,

∠ADE+∠ADF=180°(平角的定义),

∴∠ADF__________ (______________________),

AD∥BC (__________________________);

(2)ABEF的位置关系是:互相平行.

BE平分∠ABC(已知),

A∠BC=2∠ABE(角平分线定义).

又∵∠ABC=2∠E(已知),

2∠E=2∠ABE (____________________),

∴∠E=∠ABE(____________________),

_____________ (________________________).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,ADBC边上的中线,EAD的中点,过点ABC的平行线交BE的延长线于点F,连接CF.

(1)求证:AF=DC ;

(2)若∠BAC=,试判断四边形ADCF的形状,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场销售A,B两种品牌的教学设备,这两种教学设备的进价和售价如表所示

A

B

进价(万元/套)

1.5

1.2

售价(万元/套)

1.65

1.4

该商场计划购进两种教学设备若干套,共需66万元,全部销售后可获毛利润9万元.
(1)该商场计划购进A,B两种品牌的教学设备各多少套?
(2)通过市场调研,该商场决定在原计划的基础上,减少A种设备的购进数量,增加B种设备的购进数量,已知B种设备增加的数量是A种设备减少的数量的1.5倍.若用于购进这两种教学设备的总资金不超过69万元,问A种设备购进数量至多减少多少套?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的边长为10,AG=CH=8,BG=DH=6,连接GH,则线段GH的长为( )

A.
B.
C.
D.10﹣5

查看答案和解析>>

同步练习册答案