精英家教网 > 初中数学 > 题目详情

【题目】小刚参加射击比赛,成绩统计如下表:

成绩(环)

次数

关于他的射击成绩,下列说法正确的是(

A. 极差是2 B. 中位数是8 C. 众数是9 D. 平均数是9

【答案】B

【解析】根据极差反映了一组数据变化范围的大小,求极差的方法是用一组数据中的最大值减去最小值,以及众数是出现次数最多的数,中位数是按大小顺序排列后,最中间的一个即是中位数,所有数据的和除以数据个数即是平均数,分别求出即可.

A、极差是10-6=4环,故本选项错误;
B、把数从小到大排列起来;6,7,7,7,8,8,9,9,9,10,位于中间的两个数都是8,所以中位数是(8+8)÷2=8,故本选项正确;
C、7和9都出现了3次,次数最多,所以众数是7环和9环,故本选项错误;
D、平均数=(6+7×3+8×2+9×3+10)=8,故本选项错误;
故选B.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,点A1 , A2在射线OA上,B1在射线OB上,依次作A2B2∥A1B1 , A3B2∥A2B1 , A3B3∥A2B2 , A4B3∥A3B2 , ….若△A2B1B2和△A3B2B3的面积分别为1、9,则△A1007B1007A1008的面积是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】综合题。
(1)先化简,再求代数式的值( + )÷ ,其中a=(﹣1)2012+tan60°.
(2)关于x的方程3x2+mx﹣8=0有一个根是 ,求另一个根及m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在坐标系中放置一菱形OABC,已知∠ABC=60°OA=1.先将菱形OABC沿x轴的正方向无滑动翻转,每次翻转60°,连续翻转2014次,点B的落点依次为B1B2B3,则B2014的坐标为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:在x轴的上方,直角∠BOA绕原点O顺时针方向旋转,若∠BOA的两边分别与函数y=﹣ 、y= 的图象交于B、A两点,则tanA=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC中,AB=AC,把△ABC绕A点沿顺时针方向旋转得到△ADE,连接BD,CE交于点F.
(1)求证:△AEC≌△ADB;
(2)若AB=2,∠BAC=45°,当四边形ADFC是菱形时,求BF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线y=a(x+3)(x﹣1)(a≠0),与x轴从左至右依次相交于A、B两点,与y轴相交于点C,经过点A的直线y=﹣ x+b与抛物线的另一个交点为D.

(1)若点D的横坐标为2,求抛物线的函数解析式;
(2)若在第三象限内的抛物线上有点P,使得以A、B、P为顶点的三角形与△ABC相似,求点P的坐标;
(3)在(1)的条件下,设点E是线段AD上的一点(不含端点),连接BE.一动点Q从点B出发,沿线段BE以每秒1个单位的速度运动到点E,再沿线段ED以每秒 个单位的速度运动到点D后停止,问当点E的坐标是多少时,点Q在整个运动过程中所用时间最少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】AB两地相距2400米,甲、乙两人分别从AB两地同时出发相向而行,乙的速度是甲的2倍,已知乙到达A15分钟后甲到达B地.

(1)求甲每分钟走多少米?

(2)两人出发多少分钟后恰好相距480米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:在平行四边形ABCD中,AM=CN.求证:四边形MBND是平行四边形.

查看答案和解析>>

同步练习册答案