分析 根据等式的性质,可得∠BAD与∠CAD′的关系,根据SAS,可得△BAD与△CAD′的关系,根据全等三角形的性质,可得BD与CD′的关系,根据勾股定理,可得答案.
解答 解:作AD′⊥AD,AD′=AD,连接CD′,DD′,如图:![]()
∵∠BAC+∠CAD=∠DAD′+∠CAD,
即∠BAD=∠CAD′,
在△BAD与△CAD′中,
$\left\{\begin{array}{l}{AB=CA}\\{∠BAD=∠CAD}\\{AD=AD′}\end{array}\right.$,
∴△BAD≌△CAD′(SAS),
∴BD=CD′.
∠DAD′=90°
由勾股定理得DD′=$\sqrt{A{D}^{2}+(AD′)^{2}}$=3$\sqrt{2}$,
∠D′DA+∠ADC=90°
由勾股定理得CD′=$\sqrt{C{D}^{2}+(DD′)^{2}}$=$\sqrt{34}$,
∴BD=CD′=$\sqrt{34}$,
故答案为:$\sqrt{34}$.
点评 本题考查了全等三角形的判定与性质,利用了全等三角形的判定与性质,勾股定理,作出全等图形是解题关键.
科目:初中数学 来源: 题型:选择题
| A. | a2+b2=2h2 | B. | $\frac{1}{a^2}+\frac{1}{b^2}$=$\frac{1}{h^2}$ | C. | $\frac{1}{a}+\frac{1}{b}$=$\frac{1}{h}$ | D. | ab=h2 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 120° | B. | 135° | C. | 150° | D. | 145° |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com